

- Reductores y Motorreductores

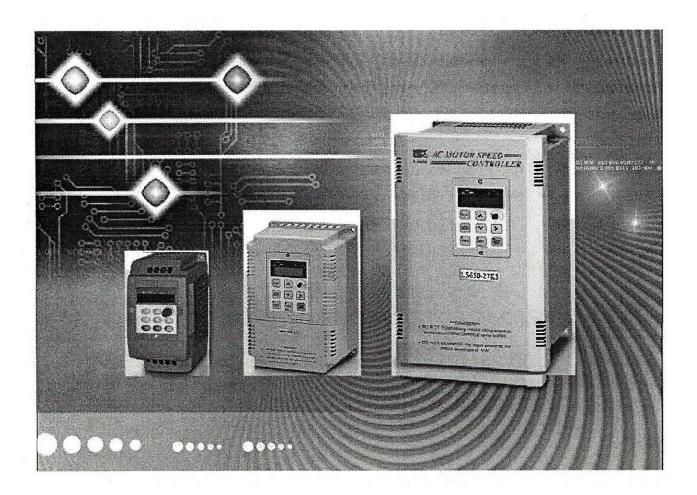
- Motores

- Variadores de Velocidad

2015

ABACtransmisiones S.R.L.
Marcos Sastre 4796 - Buenos Aires - Argentina Telefax:(54-11) 4566-3609 // 4648-2034 E-MAIL: abac@abactransmisiones.com.ar

VARIADORES


TRABAJAMOS LAS SIGUIENTES MARCAS: YASKAWA (Japón), LONG SHENQ (Taiwán)

INDICE

VARIADORES DE FRECUENCIA	Pág. 3
LS 650	Pág 3

Variadores de velocidad para motores de C.A. Long-Shenq LS650 Manual de instalación y programación

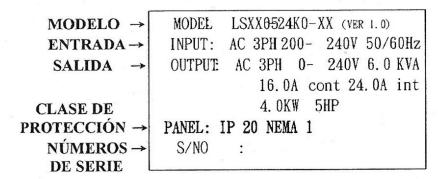
Modelos disponibles para alimentación monofásica 220V/ 240V o trifásica 200V/ 240V y 380/ 460V- 50/60Hz

CT(torque constante): 150% durante 60 seg. (recomendables para maquinaria en gral.) VT(torque variable): 120% durante 60 seg. (recomendables para bombas y ventiladores)

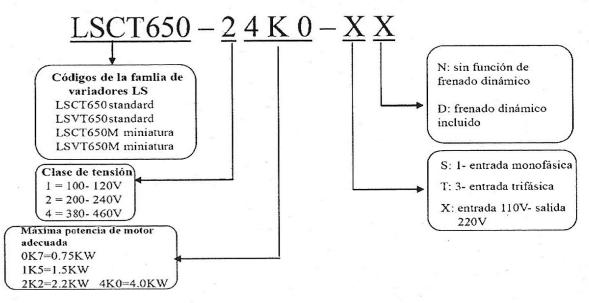
Gracias por elegir nuestros productos. Por favor lea atentamente este manual antes de proceder a su instalación y utilización.

Tabla de contenidos

I.Instalación	1-1
II.Cableado	2-1
III.Operador digital	3-1
IV. Descripción de funciones de los parámetros	
V. Protecciones y soluciones	
VI. Selección de unidades y resistencias de frenado	
VII. Apéndice	7-1
♦ Especificaciones standard	
♦ Características comunes	
◆ Resumen de los códigos de error	
◆ Esquemas de dimensiones	


Instalación

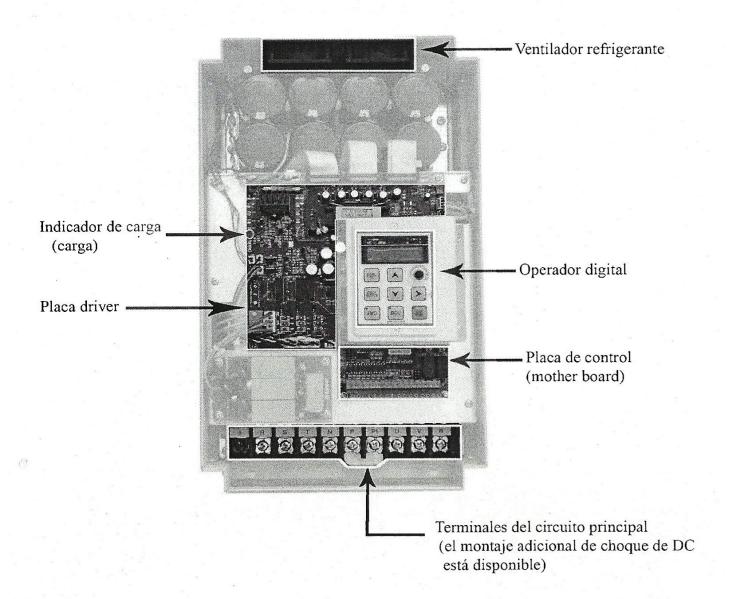
◆ Contenidos de la chapa de características	1-1
♦ Vista interior del variador	1-2
◆ Orientación y espaciamiento del montaje.	1-3



Contenidos de la chapa de características

La chapa de características, en el lateral derecho del variador, contiene el modelo, especificaciones, clase de protección y otras informaciones como se describe debajo.

Detalles del número de modelo (MODEL)

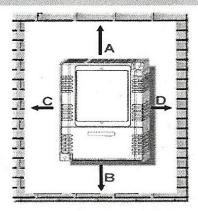


Números de modelo de referencia y potencias

Modelo No.	Potencia	Modelo No.	Potencia	Modelo No.	Potencia
0K2	0.2KW	011	11KW	075	75KW
0K4	0.4KW	015	15KW	090	90KW
0K7	0.75KW	018	18.5KW	110	110KW
1K5	1.5KW	022	22KW	132	132KW
2K2	2.2KW	030	30KW	160	160KW
4K0	4.0KW	037	37KW	185	185KW
5K5	5.5KW	045	45KW	220	220KW
7K5	7.5KW	055	55KW	260(VT series)	260KW

Vista interior del variador LS 650

Dirección del montaje y espaciamiento


Para mantener una buena circulación de aire, el variador debe ser asegurado en posición vertical con suficiente espaciamiento dejado hasta sus componentes circundantes. En vista de que los ventiladores refrigerantes son montados en la base del variador, suficiente espacio debe ser mantenido para facilitar la circulación de aire.

Precauciones para la instalación:

- (1) Para aplicaciones a una temperatura ambiente por sobre 40°C, instale el variador en un lugar bien ventilado o refuerce el sistema refrigerante por medios externos.
- (2) La generación momentánea de altas temperaturas puede tener lugar si un resistor de frenado está conectado al variador; por favor seleccionar cuidadosamente el sitio de instalación para el resistor o montar ventiladores adicionales para ayudar a la alta disipación.
- (3) El sitio de instalación debe ser bien ventilado y mantenido lejos de productos inflamables.
- (4) Determine el espaciamiento mínimo entre el cuerpo del variador y las paredes del tablero de acuerdo al modelo de variador y su potencia.

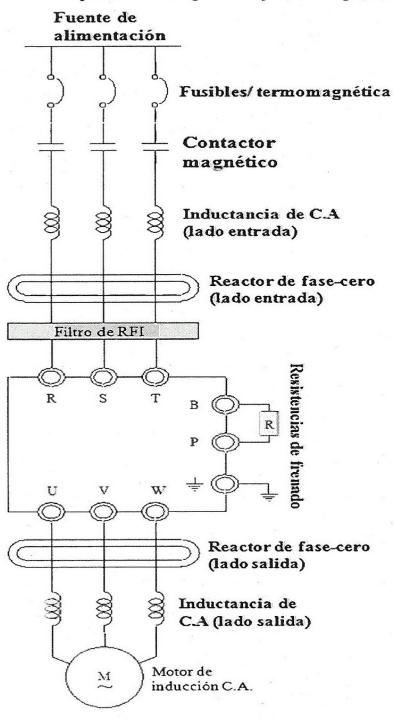
Después de apagar el suministro de potencia, espere cinco minutes o más para completar la descarga del condensador interno antes de abrir la tapa.

Tabla de espaciamientos mínimos para montaje en gabinete

(Por favor, vea los diagramas de referencia y la tabla)

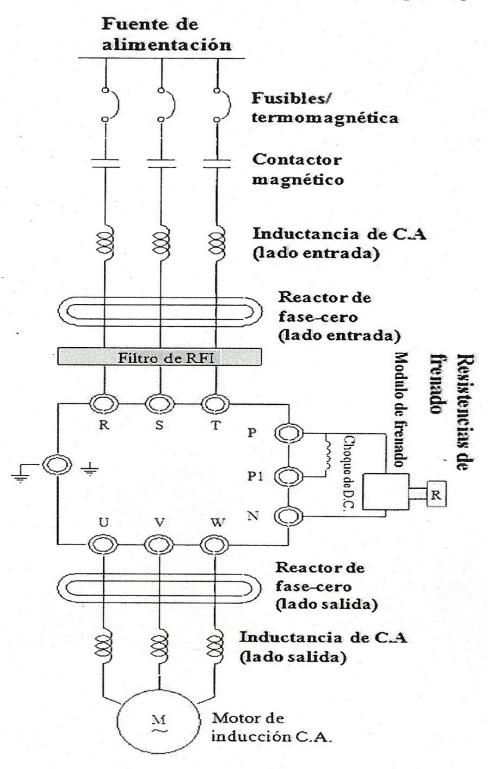
Dirección Capacidad del LS650capacity		A		В		C		D
2.2kw y por debajo	≧	100 mm	≥	100 mm	_ ≧	50 mm	\geq	50 mm
4.0kw hasta 11kw	\geq	120 mm	\geq	120 mm	≧	50 mm	\geq	50 mm
15kw hasta 22kw	_ ≥	150 mm	_ ≥	150 mm	\geq	100 mm	\geq	100 mm
30kw hasta 37kw	\geq	200 mm	\geq	200 mm	\geq	150 mm	\geq	150 mm
45kw hasta 75kw	≥	300 mm	≥	300 mm	\geq	200 mm	\geq	200 mm
90kw hata 260kw	\geq	400 mm	\geq	400 mm	≥	250 mm	2	250 mm

Cableado

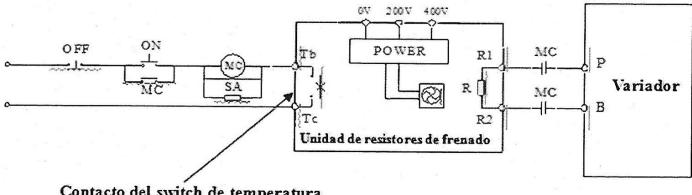

◆ Esquema de la configuración de periféricos	2-1
♦ Montaje de los circuitos de	
protección del frenado	2-3
♦ Bornera de terminales del circuito principal	2-4
◆ Esquemas de cableado	
♦ Vista de las placas de control de LS650M y LS650	
◆ Descripción de funciones de los	
terminales de control	2-11
◆ Cableado de los terminales del	
circuito de control de LS650 M	2-12
◆ Cableado de los terminales del	
circuito de control de LS650	2-13

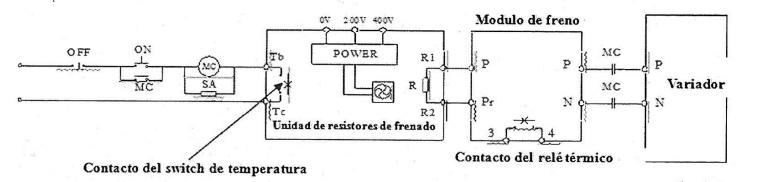
Esquema de la configuración de periféricos

Familia trifásica 200V/400V.


Diagrama de cableado del sistema para modelos por debajo de 20Hp (20Hp incluído)

Familia trifásica 200V/400V.

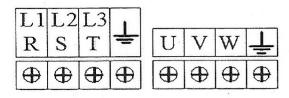

Diagrama de cableado del sistema para modelos por arriba de 25Hp (25Hp incluído)

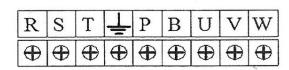

Montaje de los circuitos de protección del frenado

Varidores clase 200V/400V: 0,4Kw a 18Kw

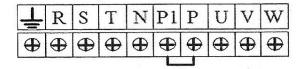
Contacto del switch de temperatura

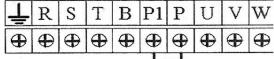
Variadores clase 200V/ 400V: 22Kw a 260Kw

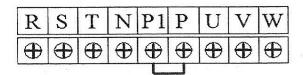


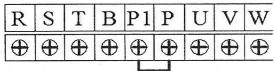


Bornera de terminales del circuito

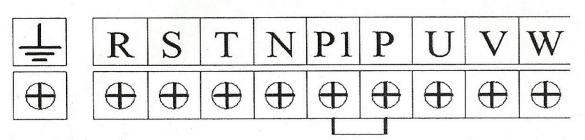

◆ 0.25KW-1.5KW (LS650M)


◆ 0.4KW-11KW (Serie 200V




◆15KW-30KW(Serie de 200V) 15KW-37KW (Serie de 400V) ◆15KW-30KW (serie de 200V con freno) 15KW-37KW (Serie de 400V con freno)

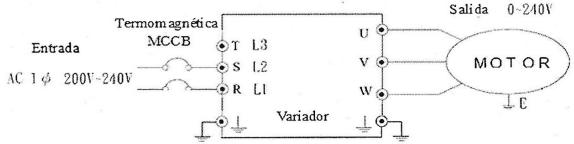
◆37KW-55KW(Serie 200V) 45KW-75KW (Serie 400V) ◆37KW-55KW (serie de 200V con freno) 45KW-75KW (serie de 400V con freno)



El terminal de puesta a tierra, está localizado en el exterior del gabinete

El terminal de puesta a tierra, está localizado en el exterior del gabinete

◆ 75KW-110KW(serie de 200V) 90KW-260KW (serie de 400V)

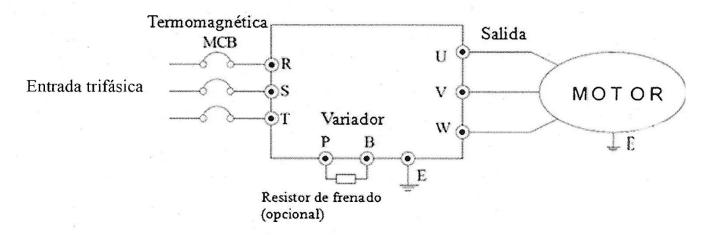


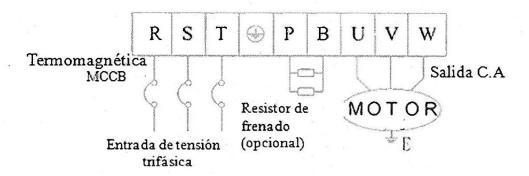
El terminal de puesta a tierra está localizado en la esquina inferior izquierda de la bornera de terminales.

Método de cableado:

Diagrama de cableado del circuito principal monofásico Tensión de entrada de 1 fase de 220V (LS650M-20K2-S, LS650M-20K4-S, LS650M-20K7-S, LS650M-21K5-S)

- (1) Cada variador y carcaza de motor deben ser puestos a tierra para proteger al cuerpo humano de descargas y shock eléctrico.
- (2) Cablear la tensión de entrada monofásica de 220V a las posiciones L1 y L2, no cablearla a la posición L3.

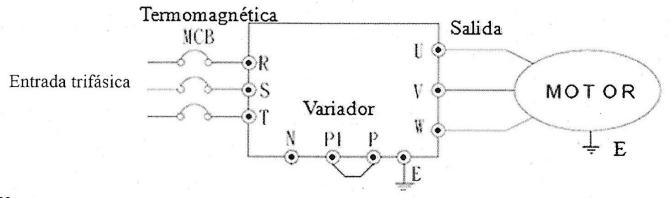

	Especificaciones LS==650M-2===-S	0K2	0K4	0K7	1K5	
da	Capacidad de motor aplicable(KW)	0,2	0,4	0,75	1,5	
de salida	HP máximos posibles para el motor	0,25	0,5	1	2	
	Capacidad de salida (KVA)	0,6	1,2	1,7	2,7	
cioi	Corriente nominal (A)	1,6	3,2	4,5	7,0	
ifica	Frecuencia de salida nominal	0,01 a 300,00HZ				
Especificaciones	Capacidad de sobrecarga	Serie CT: 150% de la corriente nominal por 60 segundos Serie VT: 120% de la corriente nominal por 60 segundos.				
	Tensión de salida máxima	La tensión de entrada trifásica correspondiente				
- <u>a</u>	Tensión/Frecuencia de entrada	Tensión	monofásica 200	a 240Vac • 5	60/60HZ	
Especificacio- nes de entrada	Fluctuación de tensión permisible		Tensión	: ±10%	2 6 3	
Especi nes de	Fluctuación de frecuencia permisible	3 ,5	Frecuenci	a: ±5%		
H 1	Corriente de entrada(A)	4,9	6,5	9,7	15,7	


3-Diagrama 1 de cableado del circuito principal trifásico

(LS650-20K4、LS650-20K7、LS650-21K5、LS650-22K2、LS650-24K0、LS650-25K5、LS650-27K5、LS650-2011)

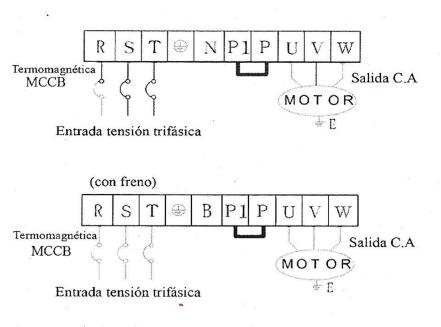
(LS650-40K7、LS650-41K5、LS650-42K2、LS650-44K0、LS650-45K5、LS650-47K5、LS650-4011)

3-Bornera de terminales principales (0,4KW/0,5HPhasta11KW/15HP)


Símbolos	Descripciones
R.S.T	Bornes de conexión de la entrada trifásica
P.B	Pueden conectarse a los resistores de frenado. No es necesario chopper de frenado
U.V.W	Bornes de conexión de salida al motor.
⊕ or ±	Terminal de puesta a tierra.

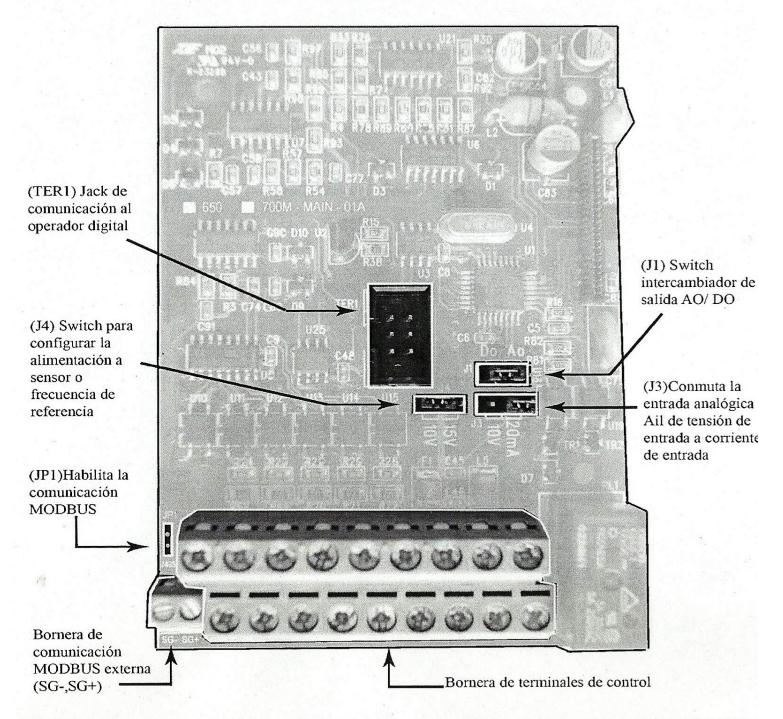
3-Diagrama 2 de cableado del circuito principal trifásico

(LS650-2015、LS650-2018、LS650-2022、LS650-2030、LS650-2037、LS650-2045、LS650-2055、LS650-2075、LS650-2090、LS650-2110)


(LS650-4015、LS650-4018、LS650-4022、LS650-4030、LS650-4037、LS650-4045、LS650-4055、LS650-4075、LS650-4090、LS650-4110、LS650-4132、LS650-4160、LS650-4185、LS650-4220、LS650-4260)

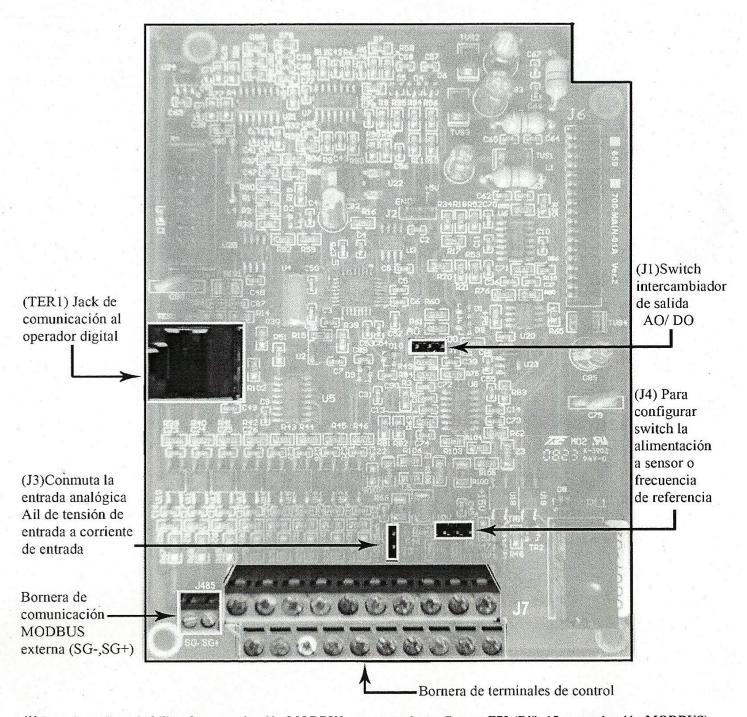
Nota:

- (1) Las unidades serie 200V y 400V trifásicas con potencia de 20HP y más, no inleuyen dentro el chopper de frenado.
- (2) El chopper de frenado para las unidades de 20HP a 75HP puede ser, fabricado a pedido, dentro del variador.


R Bornera de terminales principales (Ver p2-4 para las descripciones detalladas)

Símbolos	Descripciones
R.S.T	Bornes de conexión de la entrada trifásica
P.N	Las terminales P (+) y N (-) pueden ser conectadas externamente a la unidad de frenado, pero ellos no pueden ser conectados directamente a los resistores de frenado
P1.P	Bornes para conectar un choque de C.C.
B.P	Pueden conectarse a los resistores de frenado. No es necesario chopper de frenado
⊕ _{or} <u></u>	Terminal de puesta a tierra
U.V.W	Bornes de conexión de salida al motor

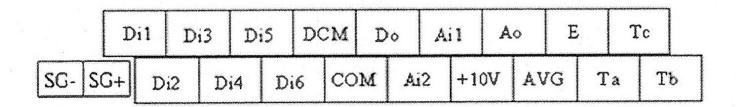
Placa de control del LS650M



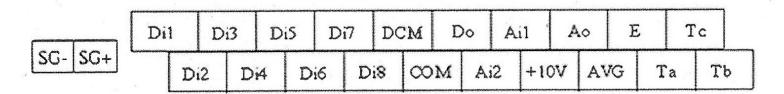
★ Cuando se desea habilitar la comunicación MODBUS, es necesario configurar F73 (Di8: 15 comunicación MODBUS)
primero y luego insertar el JP1

X Nota: El formato de comunicación R5-485, es internamente exclusivo para el externo (SG-, SG+), conectar ambos al mismo tiempo para la operación no esta permitido; solamente un formato puede ser habilitado para usar.

Placa de control del LS650


★ Cuando se desea habilitar la comunicación MODBUS, es necesario configurar F73 (Di8: 15 comunicación MODBUS) primero y luego conectar el Di8 a COM.

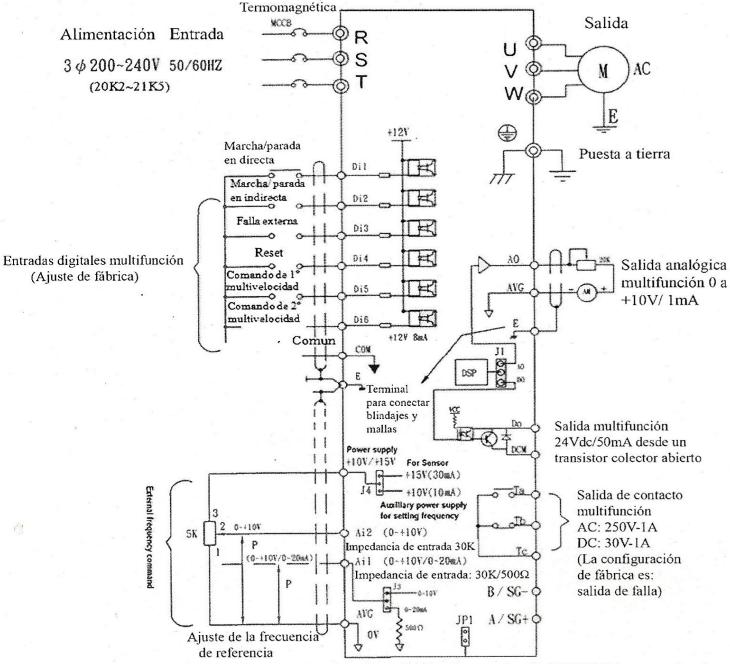
X Ver P2-15 para las descripciones funcionales de (J1, J3, J4), y ver P2-13 a P2-17 para descripciones funcionales de la bornera de terminales de control



◆ Bornera de terminales de control:

Terminales de control LS650M:

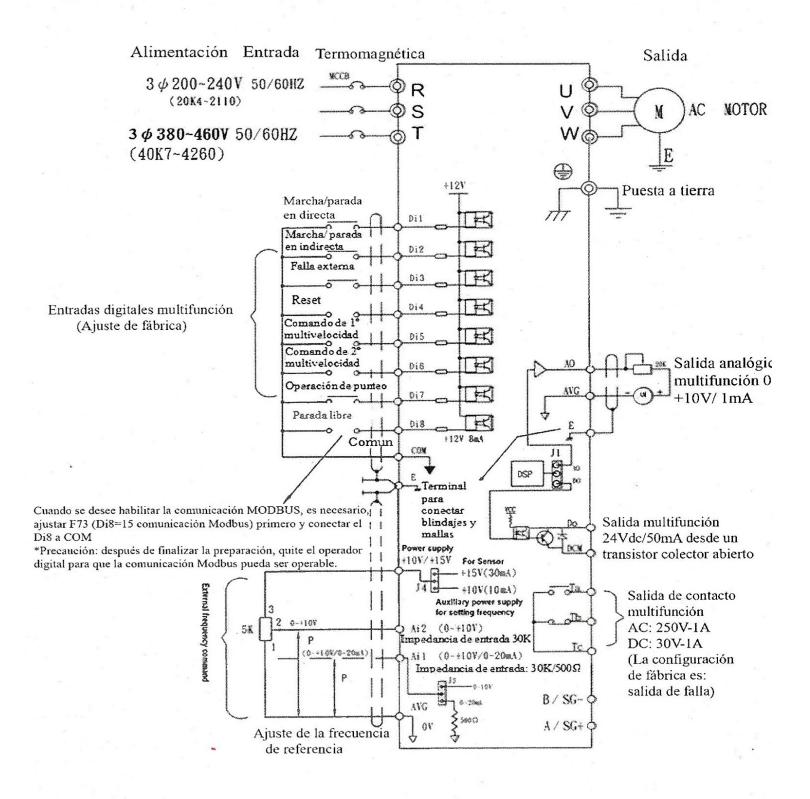
Terminales de control del LS650:


Descripciones para las funciones de los terminales de control

Identificacio termina		Función designada	Descripciones
	Dil	Comando de marcha directa FWD	Dil-COM conectados para marcha directa y desconectados para la parada
	Di2	Comando de marcha inversa (REV)	Di2-COM conectados para marcha inversa y desconectados para la parada
ción	Di3	Se activa en la entrada de falla externa (NC)	Habilitado por una señal de falla externa, que al unir Di3 con COM, hará parar al variador.
ultifun	Di4	Reset de falla	Di4 activado (al unir a COM), libera el estado bloqueado por la acción de protección.
rada m	Di5	Primer comando de multivelocidad	Los comandos de multivelocidad "1" y "2", toman los 2 bits
de ent	Di6	Segundo comando de multivelocidad	binaries para ejecutar el control de 4 velocidades cuando son activados.
Terminales de entrada multifunción	Di7	Operación de punteo	Ejecuta la operación a frecuencia de punteo cuando es activado (unido a COM)
Ę	Di8	Parada libre	Cuando el comando es activado, el variador cesa de enviar tensión a la salida inmediatamente lo que lleva al motor a una parade libre
	СОМ	Terminal común para las entradas digitales	Terminal común para la activación de las entradas multifunción
sa	+10V	+15V fuente de alimentación de sensor	La fuente saca +15Vdc (corriente máxima 30mA) para uso de sensor
alógic	1, 10 4	+10V fuente para la referencia de frecuencia	La fuente saca +10Vdc (corriente máxima 10mA) para ajustar la referencia de frecuencia
das an	Note		stá determinado por la posición del puente "J4". El ajuste de fábrica es +10V
as entra	AVG	Terminal común para las entradas analógicas	Terminal de potencia común standar para las señales en las entradas analógicas (Ail, A2i, AO)
Configuración de las entradas analógicas	Ail	Entrada analógica de tensión o corriente	Tensión de entrada DC de 0 a 10V, impedancia de entrada 30KΩ, o corriente de entrada DC de 0 a 20mA, impedancia de 500Ω. El Puente J3 selecciona si es tensión o corriente de entrada.
ıfigura	Ai2	Entrada analógica de tensión o corriente	Tensión de entrada DC de 0 a 10, impedancia de entrada $30 \mathrm{K}\Omega$.
Š	AO	Salida analógica	Monitor de la salida analógica multifunción (0 a 10VDC). El terminal común es AVG
	DO	Indicador de velocidad de consigna alcanzada	Este contacto será activado (cerrará) cuando la frecuencia de salida alcance a la frecuencia de referencia (F16)
Terminales de salida multifunción	N	y por hardware (Pu	na elección ya sea AO, o bien, DO. El ajuste puede hacerse por softwente J1). AO por software debe establecerse por los parámetros F63 e, DO por software debe establecerse por el parámetro.
les de ifunc	DCM	Terminal común para la salida DO	Terminal común para la señalde los terminales de salida multifunction.
mult	Ta	Sailua DO	Los contactos Ta y Tb serán activados, por la función de protección contra fallas del variador.
E E	Tb	Salidas de falla	* Ta- Tc está cerrado en la falla
	Tc		*Tb- Tc está abierto en la falla
	Е	Terminal para blindajes de los ca.	Cables maltradados son los usados exclusivamente cuando hay que ponerlos a tierra para proteger las señales.

Diagrama de cableado de los terminales del circuito de control

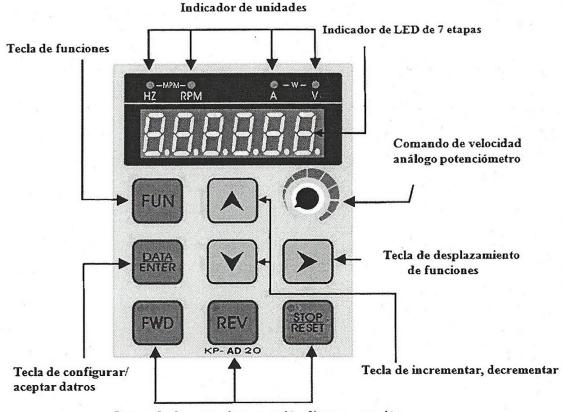
Diagrama de cableado de los terminales del circuito de control del LS650M


Cuando se desea habilitar la comunicación MODBUS, es necesario, ajustar F73 (Di8=15 comunicación Modbus) primero e inserte el Puente JP1

^{*}Precaución: por favor desconectar primero el oparador digital

^{*}Precaución: después de finalizar la preparación quite el operador digital para que la comunicación Modbus pueda ser operable.

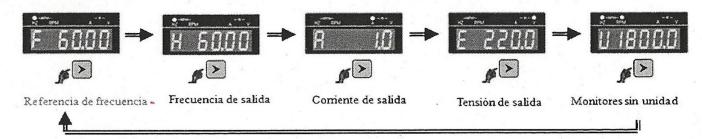
Diagrama de cableado de los terminales del circuito de control LS650



Operador digital

	Detalles del panel3-1
	Descripción de las teclas de función3-2
	Modo de configuración de parámetros3-3
	Modo de control desde el operador digital3-4
•	Chequeo de estados de los
	terminales de entrada digital3-5

Detalles del Operador Digital


Comando de operación: rotación directa; rotación inversa; PARADA/RESETEO/Indicador de Estado

Funciones del panel de operación digital

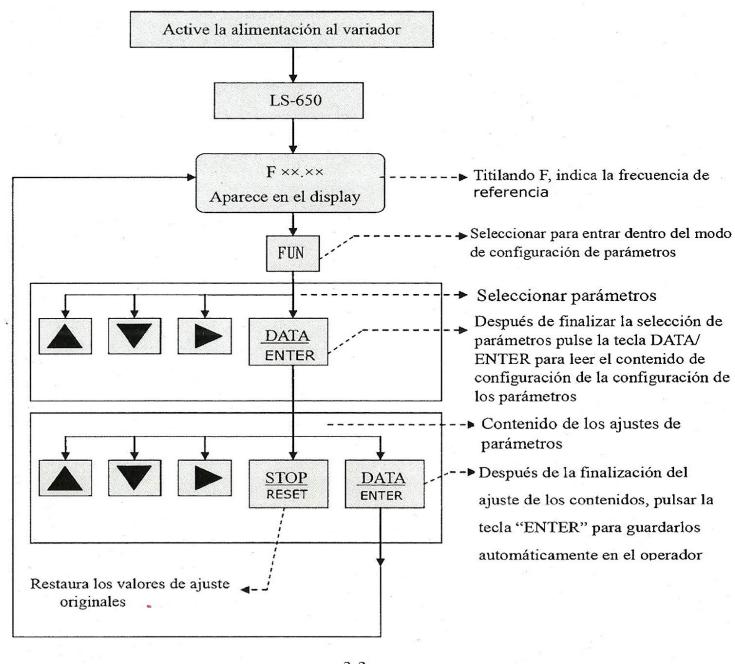
El panel de operación digital es capaz de realizar las funciones de marcha, parada y configuración de frecuencia, monitoreo del estado de funcionamiento, configuración de parámetros, mostrar fallas, etc.

Rápidas y cíclicas funciones visualizables durante la operación

Cada vez que pulse la tecla del panel del operador se muestran ciclicamente las funciones, en el siguiente orden: Referencia de frecuencia → Frecuencia de salida → Corriente de salida → Tensión de salida → Monitores sin unidad.

3-1

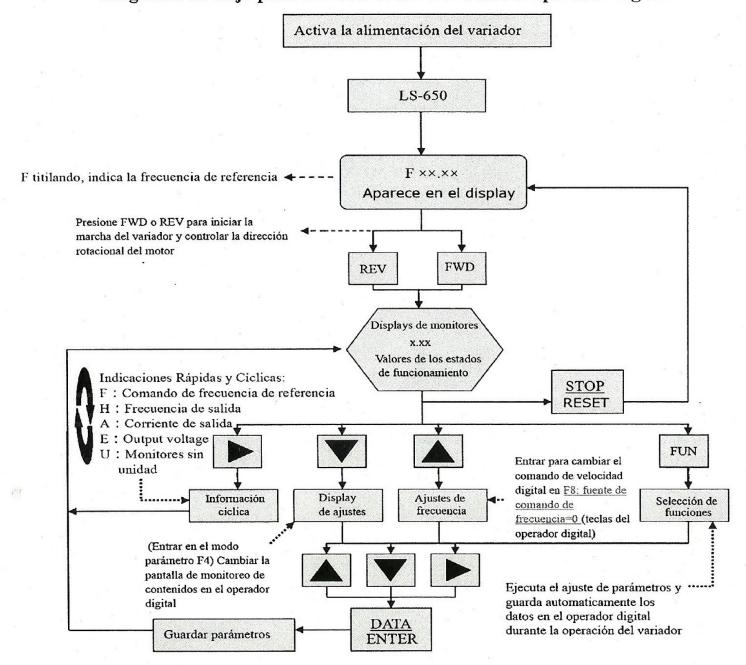
Introducción de Parámetros


Clasificación	Teclas	Descripciones resumidas de funciones
Parámetros/ Datos	FUN	Pulsar para entrar dentro del modo de edición de parámetros
rámetr Datos	DATA	Para leer y escribir los valores de los parámetros
Pa	ENTER	Para confirmar, ingresar y guardar los datos automaticamente en el operador digital (EEPROM interior)
v		Desplaza la posición del cursor parpadeante hacia la derecha para seleccionar los datos de entrada
entar,	>	* Con cada presión de esta tecla, se habilita la visualización cíclica d urante la operación.
increm ntar		F: Referencia de frecuencia → H: frecuencia de salida → A: corriente de salida U: monitores sin unidades ← E: tensión de salida
ımiento, incr decrementar		Presione para incrementar los valores numéricos de la codificación paramétrica y los valores ajustados para los parámetros
Desplazamiento, incrementar, decrementar	dec	Ejecuta el ajuste de la frecuencia bajo el modo de control de operación, estableciendo el F8: fuente de comando de frecuencia =0 en el operador digital.
Des	~	Presione para decrementar los valores numéricos para la codificación paramétrica y los valores ajustados para los parámetros Para entrar dentro de F4 para monitorear variedad de displays bajo el modo
-		de control de operación Presionar para la ejecución de una rotación en directa mediante el operador digital. Se encenderá un LED indicador rojo
o,	FWD	Sirve como una tecla de función para ejecutar el comando de parar la marcha cuando la configuración de la dirección de giro no está limitada al comando en directa
os de operación	DEW.	Presionar para la ejecución de una rotación en inversa mediante el operador digital. Se encenderá un LED indicador rojo
Sirve como una tecla de función para ejector cuando la configuración de la dirección de en inversa. Pulsar para ejecutar el comando de parar la c	Sirve como una tecla de función para ejecutar el comando de parar la marcha cuando la configuración de la dirección de giro, no está limitada al comando en inversa.	
Ö		Pulsar para ejecutar el comando de parar la marcha
	STOP RESET	Sirve como una tecla de reset de anormalidades cuando es encontrada una anormalidad
Control de velocidad	(D)	Control de velocidad mediante potenciómetro del operador digital, cuando F8: fuente de comando de frecuencia=1

Modo de ajuste de parámetros

Este modo es para cambiar los valores ajustados de los parámetros internos. Utilice las teclas desplazar, incrementar y decrementar para cambiar los ajustes de los parámetros y pulse la tecla ENTER/ DATA para guarder automáticamente los datos cambiados en el operador digital (EEPROM interior) y salir del modo de configuración. Para más detalles de los parámetros ver el "Resumen de los ajustes de parámetros" en el apéndice.

Diagrama de flujo del modo de programación de parámetros



Modo de control

El siguiente diagrama de flujo es el proceso de modo de control para el operador, el cual describe los medios de control de la operación y el modo para mostrar la referencia de contenido de fallas, los registros de fallas, etc.

Diagrama de flujo para el modo de control desde el operador digital

Nota: si la fuente de señal de velocidad, no esta bajo el F8 (fuente de comando de frecuencia) = 0, modo de operador digital, entonces el comando de velocidad digital sera inefectivo.

Menú de chequeo del estado de los terminales de entrada digital

◆ Accesible desde F4=11: Din (muestra los valores de estado de los terminales de entradas digitales) Chequear el display de los valores de estado, para los terminales digitales, solo esta disponible cuando el varidor está en marcha.

Ejemplo	Valor digital	Di8	Di7	Di6	Di5	Di4	Di3	Di2	Dil	Terminales digitales
No.	total	128	64	32	16	8	4	2	1	Valor del bit digital
		OFF	Indica el valor							
1	0	×	×	×	×	×	×	×	×	cuando está habilitado
2	42	OFF	OFF	ОИ	OFF	ON	OFF	ОИ	OFF	Indica el valor cuando está
2	42	×	×	32	×	8	×	2	×	habilitado
	0.7	OFF	ON	OFF	ON	OFF	ON	ON	ON	Indica el valor
5	3 87	×	64	×	16	×	4	2	1	cuando está habilitado
	ON	OFF	ON	ОИ	OFF	OFF	OFF	OFF	Indica el valor cuando está	
4	4 176	128	×	32	16	×	×	×	×	habilitado
5 199	ON	ON	OFF	OFF	OFF	ON	ON	ON	Indica el valor	
	128	64	×	×	×	4	2	1	cuando está habilitado	
6 216	ON	ON	OFF	ON	ОИ	OFF	OFF	OFF	Indica el valor	
	128	64	×	16	8	×	×	×	cuando está habilitado	
7 222	222	ON	ON	OFF	ON	ON	ON	ON	OFF	Indica el valor cuando está
	128	64	×	16	8	4	2	×	habilitado	
0	255	ON	Indica el valor cuando está							
8	255	128	64	32	16	8	4	2	1	habilitado

- ◆Los valores digitales totales son para comprobar si los Di1- Di8, terminales digitales, operan normalmente
- Ejemplo 1: el valor digital total es 0, los terminales Di1-Di8→ están todos en estado OFF.
- Ejemplo 2: el valor digital total es 42, los terminales Di2, Di4, Di6→están en estado ON.
- Ejemplo 3: el valor digital total es 87, los terminales Di1, Di2, Di3, Di5, Di7→están en estado ON.
- Ejemplo 8: el valor digital total es 255, los terminales Di1- Di8→están en estado ON.

Chequear el display de los valores de estado, para los terminales digitales, solo esta disponible cuando el varidor está en marcha.

**Tome el ejemplo 2 para un cálculo de prueba: el valor del bit digital de Di2 es 2, el valor del bit digital de Di4 es 8 y el valor del bit digital de Di6 es 32; por lo tanto la indicación del valor digital total es 2+8+32= 42

Descripción de las funciones de los parámetros

◆ Configuración bomba de agua	4-1
◆ Configuración del display del operdor digital	4-1
◆ Parámetros del control de la operación	
◆ Configuración del sentido de rotación	
◆ Configuración de comandos de multivelocidad	4-4
◆ Tiempos de aceleración/ desaceleración	
◆ Entradas analógicas	
◆ Salida analógica	
◆ Entradas digitales	
♦ Salida digital	
♦ Frecuencia de salto	
♦ Configuración de protecciones del motor	
♦ Configuración de los parámetros	
vinculados a los datos del motor	4-13
◆ Configuración de la curva de tensión (V/F)	
◆ Recuperación de parámetros	

Configuración para Bomba de agua

Programable durante la operación	Parámetro	Descripción	Rango de ajuste	Unidad	Ajuste de fábrica
No	F 0	Valores de ajuste de presión de agua	0.0 a 10.0	Kg/cm2	2.0

◆ Ver manual original para más detalles.

	Configurar el terminal de	
No	activación después de restaurar la 0 a 1	0
	alimentación	

Configuración del Display del operador digital

Selecciona las variables a ser

rogramable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
Sí	F 5	Display de parámetro monitores sin unidad	0.01 a 300.00		30.00

Sí F 6 Display del tiempo de filtrado 0 a 15 6

- ◆Esta función es capaz de filtrar la variación de los valores de muestra del bit bajo, así como lee una muestra más estable de los datos de estado.
- ◆Esta función es llevada a cabo por el filtra pasabajos (LPF) interno. No configurar un tiempo largo a este parámetro, porque ello afectará la velocidad de respuesta en mostrar los datos

Parámetros del control de la operación

X			
No E7	Fuente del control de la	0.41	0
110	I defice del control de la	0	Y .
	operación		

- * Puede seleccionar la fuente de control de la operación ya sea desde el operador digital o bien desde los terminales de entrada digital.
 - Código 0: Desde el operador digital: El operador digital controlará el arranque del variador, la rotación directa, la rotación inversa y la parada; o también un protocolo de comunicación MODBUS será aplicado para ejecutar el control de la comunicación serie.
 - Código 1: Desde los terminales de entrada digital: Los terminales de entrada digital (F67) controlarán el arranque, la rotación directa, la rotación inversa y la parada del variador.

No F8	Fuente del comando de	0.08	1
	frecuencia	UAB	

◆ Este parámetro es el del comando de frecuencia para variador y motor, Las siguientes 9 opciones de comandos de frecuencia y el modo de operación automática, están disponibles para selección, en concordandia con los requerimientos configurativos del sistema de control.

- ♦ La secuencia de prioridad para el comando de frecuencia es: operación automatico > punteo > habilitación de las Di y Ai > velocidad designada > fuente de comando de frecuencia F8.
- 0 : Operador digital (velocidad principal): A ser ajustada y controlada por las teclas de incremento y decremento en el operador digital.
- 1: Entrada Ai del panel de operación: A ser controlada por la señal de 0 a 50Vdc desde el regulador de velocidad pote frontal en el panel de operación.
- 2: Entrada Ai2 (+10V/20mA): A ser controlada por la señal de tensión de entrada de 0 a 10Vdc o por la señal de 0 a 20mA(DC) desde el terminal de entrada analógica Ai1.
- 3: Entrada Ai2 (+10V): A ser controlada por la señal de tensión de entrada 0 a 10Vdc desde el terminal de entrada analogica Ai2.
- 4 : Ai1+Ai2: A ser controlada por la suma de dos valores de señal de entrada, el de la tensión o corriente de entrada en Ai1 y el de la tensión de entrada en Ai2.
- 5 : Ai1-Ai2/MAX: Toma para el control de velocidad, el valor máximo de ambas entradas de señal analógica, en Ai1 y Ai2.
- 6 : Ai1-Ai2/MIN: Toma para el control de velocidad, el valor mínimo de ambas entradas de señal analógica en Ai1 y Ai2.
- 7 : PID (%): Ejecuta la señal de realimentación analógica externa y la entrada dentro del control de realimentación del PID.
- 8: Terminal digital para incrementar/ decrementar: Entra señal al terminal de entrada digital para controlar el incremento/ decremento de la velocidad.

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
No	F 9	Tiempo de frenado antes del arranque	0.0 a 120.0	Segundos	0.0

		3	
Proceedings of the control of the co	Conviente de fuenade antes		
No 510	Corriente de frenado antes		% 30.0
INO IT IN	del arranque	0.0 a 100.0	70 50.0

◆ Este parámetro es para ajustar el porcentaje de la salida de corriente de frenado de continua antes de la orden de marcha del variador. El valor mínimo es ajustado, es decir "O", no se dá energía de frenado a la salida y se considerará como el inicio de un retardo para el comienzo de segunda marcha. La configuración de "F9" gobernará el tiempo de retardo y el porcentaje de corriente de frenado estará basado en el ajuste de la corriente nominal (F95) del variador.

No F11	Modo de parada 0 a 2	1

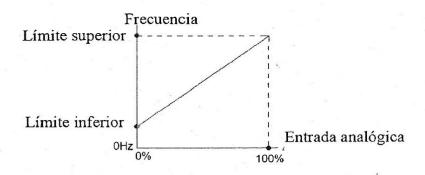
- ◆ Selecciona un modo de parada apropiado, de acuerdo con los requerimientos operacionales de la máquina.
- 🍱 0 : Parada libre: Una entrada de señal de parada llevará al variador a cortar su salida.
- 1 : Parada dinámica: Desacelera y para al motro de acuerdo al ajuste del tiempo de desaceleración.
- 2 : Parada dinámica + freno de CC: Disminuye la velocidad a un ritmo de acuerdo al tiempo de d desaceleración ajustado. La acción del frenado de continua se habilita cuando la frecuencia de salida se reduce a cero, así, la ocurrecncia del fenómeno de "cabeceo" puede ser evitada después de detener al motor.

No	F12	Parada y tiempo de frenado	0 a 120.0	Segundos 0.0
No	F13	Parada y corriente de frenado	0 a 100.0	% 30.0

No entrar un valor mínimo "0" para ajustar el tiempo de frenado de C.C. y la corriente de frenado de C.C; una configuración de valor "0" dejará la energía de frenado inactivo.

No F14 Restricción de la dirección de rotación	0 a 3
--	-------

◆ Use este parámetro para seleccionar y restringir la dirección de rotación del motor a su rotación en directa o a su rotación en inversa según lo requerido por el sistema mecánico.


0: Rotación directa/inversa disponibles

1: Rotación directa solamente

2 : Rotación inversa solamente

3: Disponible la rotación inversa con señal de comando negativa.

durante la	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica	
operación						
No	F15	Límite inferior de frecuencia	0.00 a 300.00	HZ	(00.0
No	F16	Límite superior de la frecuencia	0.00 a 300.00	HZ	60.00	50.00

· ·		
Control of the Contro	Calaggiana la fugarrancia da	
10 A PT	Selecciona la frecuencia de	0 1
No E17		i vai i vai
	salida minima	1
	~	

0 : Para un cero rápido.

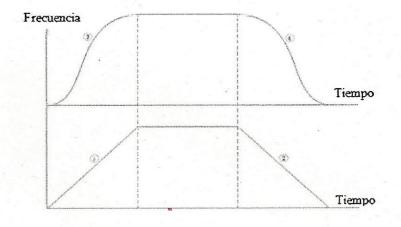
1 : Para la hipótesis de frecuencia de salida más baja, parámetro F101. Cuando F15 ≥ F101, la frecuencia del límite inferior será la frecuencia de salida mínima para llevar a cabo la operación.

Configuración del comando de frecuencias de multivelocidad

		ros de comando altivelocidad	Comando de multivelocidad 4	Comando de multivelocidad 3	Comando de multivelocidad 2	Comando de multivelocidad 1	Rango de ajuste	Unidad	Ajuste de fábrica
Sí	F18	Velocidad principal	OFF	OFF	OFF	OFF	0,00 a 300,00HZ	HZ	5, 00
Sí	F19	Velocidad dig. 1	OFF	OFF	OFF	ON	0,00 a 300,00HZ	HZ	5, 00
Sí	F20	Velocidad dig. 2	OFF	OFF	ON	OFF	0,00 a 300,00HZ	HZ	10,00
Sí	F21	Velocidad dig. 3	OFF	OFF	0.10	ON	0.00 a 300,00HZ	HZ	15, 00
Sí	F22	Velocidad dig. 4	OFF	ON	OFF	OFF	0.00 a 300,00HZ	HZ	20, 00
Sí	F23	Velocidad dig. 5	OFF	ON	OFF	ON	0.00 a 300,00HZ	HZ	30, 00
Sí	F24	Velocidad dig. 6	OFF	ON	ON	OFF	0.00 a 300,00HZ	HZ	40, 00
Sí	F25	Velocidad dig. 7	OFF	ON	ON	ON	0.00 a 300,00HZ	HZ	50, 00
Sí	F26	Velocidad dig. 8	ON	OFF	OFF	OFF	0.00 a 300,00HZ	HZ	0, 00
Sí	F27	Velocidad dig. 9	ON	OFF	OFF	ON	0.00 a 300,00HZ	HZ	0, 00
Sí	F28	Velocidad dig. 10	ON	OFF	ON	OFF	0.00 a 300,00HZ	HZ	0, 00
Sí	F29	Velocidad dig. 11	ON ·	OFF	ON	ON	0.00 a 300,00HZ	HZ	0, 00
Sí	F30	Velocidad dig. 12	ON	ON	OFF	OFF	0.00 a 300,00HZ	HZ	0, 00
Sí	F31	Velocidad dig. 13	ON	ON	OFF	ON	0.00 a 300,00HZ	HZ	0, 00
Sí	F32	Velocidad dig. 14	ON	ON	ON	OFF	0.00 a 300,00HZ	HZ	0, 00
Sí	F33	Velocidad dig. 15	ON	ON	ON	ON	0.00 a 300,00HZ	HZ	0, 00

Sí F34	Velocidad de punteo	0,00 a 300,00HZ HZ	6,00
	A CONTRACTOR OF THE PROPERTY O		ATTENDED TO STATE OF THE PERSON OF THE PERSO

Tiempos de aceleración/ desaceleración


Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
Si	F35	Tiempo de aceleración de la velocidad principal y del punteo	0,0 a 30000,0	Segundos	10,0
Sí	F36	Tiempo de desaceleración de la velocidad principal y del punteo	0,0 a 30000,0	Segundos	10,0
Sí	F37	Tiempo de aceleración de las velocidades digitales 1 y 9	0,0 a 30000,0	Segundos	10,0

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
Sí	F38	Tiempo de desaceleración de las velocidades 1 y 9	0,0 a 30000,0	Segundos	10,0
Sí	F39	Tiempo de aceleración de las velocidades digitales 2 y 10	0,0 a 30000,0	Segundos	10,0
Sí	F40	Tiempo de desaceleración de las velocidades digitales 2 y 10	0,0 a 30000,0	Segundos	10,0
Sí	F41	Tiempo de aceleración de las velocidades digitales 3 y 11	0,0 a 30000,0	Segundos	10,0
Si	F42	Tiempo de desaceleración de las velocidades digitales 3 y 11	0,0 a 30000,0	Segundos	10,0
Sí	F43	Tiempo de aceleración de las velocidades digitales 4 y 12	0,0 a 30000,0	Segundos	10,0
Sí	F44	Tiempo de desceleración de las velocidades digitales 4 y 12	0,0 a 30000,0	Segundos	10,0
Sí	F45	Tiempo de aceleración de las velocidades digitales 5 y 13	0,0 a 30000,0	Segundos	10,0
Sí	F46	Tiempo de desaceleración de las velocidades digitales 5 y 13	0,0 a 30000,0	Segundos	10,0
Sí	F47	Tiempo de aceleración de las velocidades digitales 6 y 14	0,0 a 30000,0	Segundos	10,0
Sí	F48	Tiempo de desaceleración de las velocidades digitales 6 y 14	0,0 a 30000,0	Segundos	10,0
Si	F49	Tiempo de aceleración de las velocidades digitales 7 y 15	0,0 a 30000,0	Segundos	10,0
Sí	F50	Tiempo de desaceleración de las velocidades digitales 7 y 15	0,0 a 30000,0	Segundos	10,0
No	F51	Curva "S" en la aceleración	0,0 a 100,0	%	0,0
No	F52	Curva "S" en la desaceleración	0,0 a 100,0	%	0,0

◆La variación del ajuste en curva "S", puede efectivamente aminorar el efecto de carga, y, mitigar el fenómeno de impacto recibido, en el arranque y la parade del variador.

◆La función de curva "S" solo es aplicable a F8=0: operador digital (velocidad principal) y comandos de multivelocidad

En la figura de la izquierda, podemos ver claramente los valores de ajuste originales, cuando la función de curva S es habilitada, y notar que, los tiempos de aceleración, se incrementarán junto con el incremento de los valores ajustados.

Entradas analógicas

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
No	F53	Ai: 0V, offset de la entrada	-300.00-300.00	%	0,00
No	F54	Ai: 5V, ganancia de la entrada%	-300.00-300.00	%	100,00

◆ Los parámetros F53 y F54 son para definir el valor Ai del comando de señal analógica para el pote del operador digital. La relación de offset correpondiente al parámetro F53/ OV, puede ser aplicada para establecer un offset negativo para evitar interferencia de ruido en OV, o para la aplicación por otro control. El parámetro F54/ 5V es una ganancia de frecuencia con su valor de salida máximo limitado por la frecuencia límite superior F16

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
No	F55	Ail:0V, offset de entrada	-300,00-300,00	%	0,00
No	F56	Ail:10V, ganancia de entrada%	-300,00-300,00	%	100, 00
No	F57	Ail: Banda muerta	0, 00-85, 00	%	0, 00
No	F58	Ail: Constante de tiempo del filtro	0, 01-5, 00	Segundos	0, 30
No	F59	Ai2:0V, offset de entrada	-300, 00-300, 00	%	0,00
No	F60	Ai2:10V, ganancioa de entrada %	-300, 00-300, 00	%	100, 00
No	F61	Ai2: Banda muerta	0,00-85,00	%	0, 00
No	F62	Ai2: Constante de tiempo del filtro	0, 01-5, 00	Segundos	0, 30

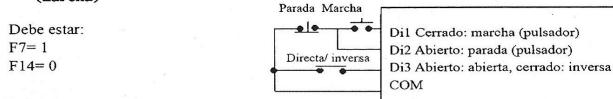
- ◆ Las funciones de este grupo de parámetros son para definir la ganancia de frecuencia correpondiente al valor máximo (10V o 20mA) de la señal analógica, mientras que el valor de salida de esta frecuencia está restringido por el límite de frecuencia superior.
- ◆ Aily Ai2 tienen el mismo modo de operación: sin embargo, para Ail es seleccionable 0 a 10V/0/20mA, por medio de los cambios en el puente J3, mientras que para la Ai2, 0 a 10V es la única opción.

Salida AO

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
Sí	F63	Función de la variable analógica de salida AO	0 a 7		0
Sí	F64	Salida AO: valor correspondiente a OV	-32767 a 32767		0
Sí	F65	AO out: 10V corresponding value	-32767 a 32767		4096

◆ Cuando es habilitada la F63: salida analógica AO, por favor configurar la F75= 0 para deshabilitar la salida digital DO (ambas no pueden ser usadas al mismo tiempo)

Entradas digitales


Programable	e				Ajuste de
durante la operación		Descripción	Rango	Unidad	fábrica
No	F66	Ciclo de scaneo de la entrada digital	10 a 2000	mseg	10

◆ Esta función es capaz de filtrar la interferencia de ruido hacia los terminales de entrada miltifunción o librar a la CPU del mal funcionamiento causado por el rebate de switch debido a interferencias de ruido o conmutación tiempo de scaneo= valor ajustado en el parámetro x 0,1mseg.

hilos	Directa/ Parada		
Deben estar:	Directal Fatada	Dil Abierto: parado,	cerrado: marcha en directa
F7= 1 F14= 0	Inverso/ Parada	Di2 Abierto: parado	, cerrado: marcha en inversa
114-0		СОМ	

2: Configuración a 3 hilos: Di3 (directa/ inversa), Di2 (parada), Di1 (marcha)

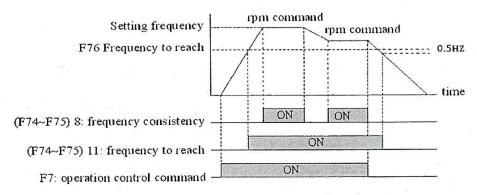
No	F68	Configuración de Di3	0 a 14	1
No	F69	Configuración de Di4	0 a 14	2
No	F70	Configuración de Di5	0 a 14	6
No	F71	Configuración de Di6	0 a 14	7
No	F72	Configuración de Di7	0 a 14	10
No	F73	Configuración de Di8	0 a 15	3

- Deshabilitado: Esta función es para deshabilitar el terminal de entrada, para evitar cualquier mal funcionamiento por razones desconocidas.
- 1: Activado por fallas externas: Una entrada de falla externa provocará que el variador corte inmediatamente su salida.
- 2: RESET: Cuando el variador entró en estado de falla, use el comando Reset para liberar el estado de falla mantenido.
- 23: Parada libre: Después de activarse el contacto, en el terminal programado de esta función, el variador cortará su salida y dejará al motor en un estado tal que parará libremente por inercia.
- 1 : Incrementa la velocidad principal: Para entrar la señal de incremento de frecuencia de la velocidad principal, para un valor de ajuste de F35 ≥ 20 seg, el valor de ajuste de F35, se tomará para efectuar la aceleración para incrementar la velocidad principal, para un valor de ajuste de F35 < 20 seg, la duración 20 seg se tomará para llevar acabo la aceleración para incrementar la velocidad principal.
- 5: Decrementar la velocidad principal: Idem al caso anterior de incrementar velocidad principal, pero el parámetro a tener en cuenta para la desaceleración es F36.
- ◆ Estas dos funciones en la frecuencia de la velocidad principal, pues el control externo puede hacerse a través de los terminales multifunción, sin embargo, la configuración de F8 (fuente de comando de la frecuencia) debe ser ajustada al valor 8 (incrementos/ decrementos por terminal digital)
- 6: primer comando de multivelocidad
- 7: segundo comando de mltivelocidad
- 8: tercer comando de multivelocidad
- 9: cuarto comando de multivelocidad

Los comandos de multivelocidad 1, 2, 3 y 4 son formateados por sistema binario de 4 bits para cumplir con las 16 multivelocidades

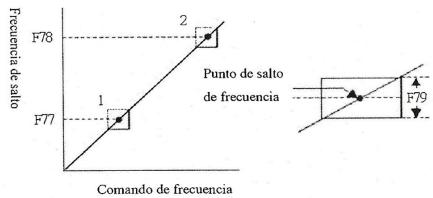
- 10 : Operación de punteo: Una vez activado, el comando punteo tiene la segunda prioridad, siguiendo a la del comando para activar la auto-operación
- 11: Auto- operación: Una vez activado y confirmado, tiene la máxima prioridad sobre cualquier velocidad; en consecuencia no se puede seleccionar ninguna otra velocidad de operación toda vez que se encuentre activada la ejecución de la auto- operación.
- 12 : Pausa de auto- operación: Cuando se selecciona la función de auto- operación programable, del variador arrancará para ejecutar la operación procedente de acuerdo a la frecuencia de la multivelocidad preajustada después de habitar los terminales funcionales: durante la operación, el terminal de pausa puede ser habilitado para interrumpir el procedimiento de operación temporariamente y llevar la ejecución de la operación a después de restaurarla de la interrupción. Si el terminal de auto- es deshabilitado y habilitado de nuevo, el procedimiento de operación será arrancado desde el punto "home" (principio)
- 13 : "Di" habilita el PID: Una vez que se selecciona habilitar los "Di", entonces la función PID es controlada por los terminales "Di" externos.
- 14 : Cuando se selecciona habilitar los "Di", Ail será la fuente de comandos de frecuencia obligatoriamente.
- 15 : MODBUS: Esta función es configurada por F73 (Di8) solamente y habilitada por Di8.

Salida digital


Programable durante la Parámetro operación	Descripción	Rango	Unidad	Ajuste de fábrica	Programable durante la operación
No F74	Configuración de retay 1	 ◆ El terminal de salida multifunción es programable, no se require una secuencia especifica para la configuración. ◆ Cuando se habilite el F75: salida "DO", configurar F63= 0 para deshabilitar la salida AO (ambas no pueden ser usadas al mismo tiempo) 	0 a 10		1

- 🔟 0 : Deshabilitado: Deshabilita el estado funcional del terminal de salida
- 1 : Habilitado en la falla: El contacto será conmutado al estado "ON" (cierre) cuando el variador detecte una condición de falla.
- 2: En operación: El contacto será conmutado al estado "ON" (cierre) cuando el variador entra en un modo de espera (standby), o está en operación.
- 3: En velocidad cero: El contacto será conmutado al estado "ON" cuando el variador pare o tenga una frecuencia de salida de valor 0.
- 4 : Directa: Salida activada cuando el variador está ejecutando la marcha en directa y sacando una frecuencia mayor que 0HZ.
- 5: Inversa: Salida activada cuando el variador está ejecutando la marcha en inversa y sacando una frecuencia mayor que 0HZ.
- 6 : Aceleración: Salida activada cuando el variador está acelerando hacia la frecuencia de consigna.
- 7: Desaceleración: Salida activada cuando el variador está desacelerando hacia una frecuencia de consigna menor o a la parada.
- 18 : Frecuencia consistente: El contacto será conmutado al estado "ON" cuando el variador saca una frecuencia consistente con el ajuste de frecuencia dado por los comandos (velocidad principal a 15 velocidades multifunción) Esta función es inadecuada para ser aplicada a un comando de velocidad analógica.
- 29: Prealarma de sobrecarga: El contacto será conmutado al estado "ON" cuando el variador detecta una salida de sobrecarga; el variador continua aún operando con el relé termoelectrónico habilitado, por un cierto tiempo (F85)
- X Sobrecarga= F90 (corriente nominal del motor) x F84 (nivel % de corriente del relé termoelectrónico)
- 10: Frecuencia a alcanzar (consigna): El contacto sera conmutado al estado "ON" cuando el variador saca una frecuencia ≥ frecuencia a alcanzar (F76)

Programable durante la operación		Descripción	Rango	Unidad	Ajuste de fábrica
No	F 76	Cuencia a alcanzar	0.00 a 300.00	HZ	60,00 50,00


♦Los terminales de salida multifunción, serán mantenidos en estado "ON" cuando la frecuencia de salida sea \ge al valor ajustado de la frecuencia a alcanzar y conmutados al estado "OFF" si la frecuencia de salida va por debajo de la frecuencia a alcanzar -0.5HZ.

Frecuencia de salto (jumping)

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
No	F77	Frecuencia de salto 1	0,00 a 300,00	HZ	0,00
No	F78	Reservado			
No	F79	Ancho de banda de salto	0,0 a 10,0	HZ	0

- ◆Las funciones de frecuencia de salto y ancho de banda del salto son aplicadas para impeder que tengan lugar la vibración resonante del sistema mecánico o del motor en ciertas frecuencias. El variador está destinado a pasar a través de esta área resonante durante la aceleración o desaceleración, sin embargo, el programa no permitirá que la operación permanezca en esta área.
- ◆Una entrada de 0Hz para configurar el ancho de banda del salto, deshabilitará la función de salto de frecuencia.

Configuración de protección del motor

No F80	Configuración de	0 a 128
No F 80	protección de bloqueo	0 4 128

Bit0: Función de protección F81: Habilita la función para protección de tensión de bloqueo (stalling) durante la desaceleración.

Bit1: Función de protección F82: Habilita la función para protección de corriente de bloqueo (stalling) durante la aceleración.

Bit2: Función de protección F83: Habilita la función para protección de corriente de bloqueo (stalling) durante la marcha a la velocidad de referencia.

Bit3: Función de protección F84: Habilita la función relé termoelectrónico.

Bit4: Función de regulación de tensión AVR: Habilita la función AVR para la tensión de salida (U.V.W.)

Bit5: Función de freno magnetic (32): Durante la desaceleración puede asistir a la función de frenado, a potencias más pequeñas resulta mejor.

Bit6: Habilita la detección de interrupción de Ail (64): Habilita la función de detección de desconexión de la línea de señal.

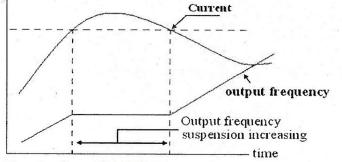
<u>Bit7 : Conmutación de modo CT / VT(128):</u> Habilita la función de conmutación CT/VT, modo CT=1 50%/60 seg; modo VT= 120%/60 seg

※ Tabla de incrementos digitales:

Valores ajustados	AVR 2 ⁴ = 16	F84 $2^3 = 8$	$F83$ $2^2 = 4$	$F82$ $2^{1} = 2$	F81 2° = 1	Valores ajustados	AVR 2 ⁴ = 16	$F84$ $2^3 = 8$	$F83$ $2^2 = 4$	F82 2 ¹ = 2	$F81$ $2^0 = 1$
0	×	×	×	×	×	16	0	×	×	×	×
1	×	×	×	×	0	17	0	×	×	×	0
2	×	×	*	0	×	18	0	×	×	0	×
3	×	×	*	0	0	19	0	×	*	0	0
4	×	×	0	×	×	20	0	×	0	×	×
5	×	×	0	×	0	21	0	×	0	×	0
6	×	×	0	0	×	22	0	×	0	0	×
7	×	×	0	0	0	23	0	×	0	o	o
8	×	0	×	×	×	24	0	0	×	×	×
9	×	О	×	×	0	25	0	0	×	×	o
10	×	0	×	0	×	26	0	0	×	O	×
11	×	0	×	0	0	27	0	0	*	0	0
12	×	o	٥	×	×	28	0	0	0	×	×
13	×	0	0	×	О	29	0	0	O	×	0
14	×	0	0	0	×	30	0	0	O	0	×
15	×	0	0	0	0	31	o	0	0	0	0

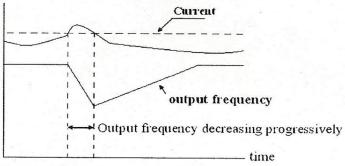
* o : Función de protección habilitada × : función de protección deshabilitada, sin función de protección cuando el valor ajustado es 0

rogramable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
No	F81	Configuración para la tensión de bloqueo durante la desaceleración	330,0 a 400,0 660,0 a 800,0	Vdc	380,0 760,0


◆ Como resultado de la inercia de la carga del motor, cuando el variador está ejecutando la desaceleración, el motor regenerará energía dentro del variador para elevar la tensión en el bus de DC. En consecuencia, el variador suspenderá la desaceleración (la frecuencia de salida suspende su decremento.) Cuando se detecta una tensión en el bus de DC más alta que el valor máximo aceptable y reasume la desaceleración previendo que la tensión en el bus de DC caiga por debajo del valor máximo aceptable.

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
No	F82	Configuración para la corriente de bloqueo durante la aceleración	30,0 a 200,0	%	170,0
No	F83	Configuración para la corriente de bloqueo durante la marcha a la velocidad de referenia	30,0 a 190,0	%	160,0

- ♦ En el proceso de aceleración, el variador suspenderá la aceleración (la frecuencia de salida deja de incrementarse), debido a una aceleración demasiado rápida o a una carga de motor demasiado grande lo que conduce a una rápida subida de la corriente de salida desde el variador que exceda el valor configurado de nivel de corriente de bloqueo. El variador reasumirá su aceleración si es que el nivel de corriente es menor que el valor configurado.
- ◆ Nivel de corriente de bloqueo durante la aceleración = (F95) corriente nominal del variador x (F82) porcentaje de corriente de bloqueo.
- ◆ Nivel de corriente de bloqueo durante la marcha a velocidad de referencia= (F95) corriente nominal del variador x (F83) porcentaje de corriente de bloqueo.


Ejemplo: Nivel de corriente de bloqueo= 4A×170% =6,8A

Function for stalling voltage protection during deceleration

F83 setup for stalling current during operation

Function for stalling current protection during acceleration

No	F84	Nivel de corriente del relé termoelectrónico	1,01 a 2,00	F90	1,50
No	F85	Tiempo de actuación del relé termoelectrónico	0,1 a 120,0	Seg.	60,0

- ◆ Cuando la capacidad nominal del variador, es más alto que la capacidad nominal del motor, ingrese la capacidad nominal del motor dentro de los parámetros F88 a F90 para evitar el quemado del motor.
- ◆Los parámetros F84, F85 proveen una función de relé térmico- electrónico para proteger al motor de sobrecalentamientos. Esta clase de característica protectiva se hace cargo de la protección frente a la pequeña habilidad de refrigeración encontrada cuando el motor está marchando a bajas velocidades.
- ◆Cuando la salida de corriente de carga desde el variador, excede el valor configurado para (F90), corriente nominal del motor, el timer para la actuación del relé termo- electrónico, sera activado.

Si	F86 R	Restricción a la corriente de	30.0 a 200.0	%	180.0
31	FOU	salida	30,0 a 200,0	/6	100,0

♦ Cuando la corriente de salida excede el valor configurado, el variador reducirá rapidamente la tensión de salida para proteger al variador del disparo de la falla por sobrecorriente y un valor configurado de F83 menor que el valor F86 en más del 20% es la condición más ideal.

Sí F87 Ganancia de inhibición de	0,0 a 100,0 % 15,0
oscilación – oscilación	70

◆ Cuando se opera en cierta banda de frecuencia, la máquina eléctrica producirá oscilación de corriente, entonces el ajuste de este valor paramétrico puede efectivamente corregir esta condición. El ancho de banda de la oscilación de corriente para un motor con potencia más alta aparecerá en una banda de frecuencia más baja; en consecuencia, se aconseja incrementar apropiadamente el valor ajustado. Sin embargo, el ajuste excesivo puede fácilmente porducir una corriente sobreexcitada. Favor de hacer un ajuste adecuado.

Configuración de parámetros relacionados a los datos de chapa del motor

Programable durante la operación	Parámetro	Descripción	Rango	Unidad	Ajuste d	le fábrica
No	F88	Frecuencia nominal	40,00 a 70,00	HZ	60,00	50,00
NI-	Fea	T :: 1	150,0 a 255,0	v	220,0	200,0
No F89	Tensión de salida (RMS)	300,0 a 510,0	·	440,0	380,0	
No	F90	Corriente nominal (RMS)	0,1 a (F95×1,3)	A	F95(Nota)

◆ F88 a F90 es un grupo de parámetros para los valores de régimen en la chapa de características del motor y deben ser configurados en concordancia con los valores de regimen de la chapa de características del motor. El variador ejecutará las funciones de control, protección de sobrecarga del motor, etc; de acuerdo a este grupo de parámetros.

Nota: Cuando la F141es llevada a su valor de ajuste de fábrica, la F90 quedará cargada a un valor igual que, el valor nominal de la F95

◆ F89 : la configuración de la tensión de entrada RST debe ser la tensión de entrada real al variador.

Nivel de baja tension: Vdc< 200V (para variadores de la serie 200V)

Vdc< 400V (para variadores de la serie 400V)

Nivel de sobretensión: Vdc>414V (para variadores de la serie 200V)

Vdc>827V(para variadores de la serie 400V)

Nivel del freno: 360Vdc±3% (para variadores de la serie 200V)

720Vdc±3% (para variadores de la serie 400V)

No	F91	Frecuencia de resbalamiento nominal	0,00 a 10,00	HZ	4,00
Sí	F92	Factor de compensación del resbalamiento	0,0 a 200,0	%	0,0

◆ Cuando el variador está comandando al motor, un incremento de la carga en el motor, incrementará el resbalamiento; así este parámetro ajusta la frecuencia de compensación para reducir el resbalamiento, tal que, los rpm en operación a la corriente nominal del motor, pueden aproximarse más a las rpm sincrónicas. Las funciones de frecuencia de resbalamiento y factor de compensación son para sobreponerse a la variación de la carga y también controlar el motor a una velocidad constante de la carga y también controlar el motor a una velocidad constante.

◆ El resbalamiento nominal del motor puede obtenerse a partir del siguiente cálculo de acuerdo a los datos de la chapa de características del motor:

$$F91 = 60 - \frac{Rpm \ del \ motor \ x \ n^o \ de \ polos \ del \ motor}{120}$$

Ejemplo:

$$F91 = 60 - \frac{1720(RPM) \times 4(P)}{120} = 2.6 (HZ)$$

$$F92 = F91 \times 90\%$$
 (Nota = 2.34(Hz)

Nota: La unidad para el valor de ajuste, del límite superior de la función compensación de resbalamiento, es %; ajutar 90% como factor de compensación del resbalamiento. Para un motor con una performance ligeramente mala, se aconseja ajustar más alto el factor de compensación.

Sí 🌯	F93	Frecuencia portadora 1000 a 16000 Hz 5000
<u> </u>		

Este parámetro es capaz de configurar la salida de frecuencia portadora para la onda modulada por ancho de pulso.

◆Los valores de ajuste de la frecuencia portadora afectarán al ruido electromagnético del motor, las pérdidas de conmutación de los IGBT y la disipación de calor debida a las pérdidas de conmutación, tal como se establece en la tabla dada debajo

Carrier frequency	Motor noise	Switching loss	Thermal runaway	Torque	Harmonic rate
2KHz	High	Low	Low	High	Low
^	A	A	A	4	+
↓ 16KHZ	Low	↓ High	♦ High	Low	₩ High

4-14

No F94	Ganancia Vdc del bus(lec	ctura 50 a 300 Fijada 140
	solamente)	

Este parámetro es para el ajuste fino de la ganancia del bus DC en ambos extremos del capacitor, mientras que el resultado será mostrado y tomado como uno de los parámetros importantes para la operación de control interna.

No F95	Ganancia de Vdc del bus (lectura	1.0 a 1000.0 A 5.0
195	solamente)	1,0 a 1000,0 A 5,0

Este parámetro es para mostar la corriente nominal del variador, mientras que el valor de corriente nominal para este variador ha sido ajustado en fábrica.

Configuración de la curva V/F (tensión/ frecuencia)

Programable	Para State				
durante la operación	Services and the services of t	Descripción	Rango	Unidad	Ajuste de fábrica
No	F96	Selección de curva V/F	0 a 1		0

0: Configuración de línea recta de 3 puntos: Un modo a ser implementado para las aplicaciones generales, al igual que un sistema de transportación moviéndose a lo largo de una línea recta, al margen de las rpm que se tengan, el torque de carga es casi constante

1 : Configuración de curva de 2 puntos: Un modo a ser aplicado a un torque con carga proporcional, tales como: ventiladores, bombas, etc.

No	F97	Configuración de la frecuencia para máxima tensión	0,10 a 300,00	HZ 60,00 50,00
, No	F98	Configuración de la tensión de la tensión de salida más alta	0,1 a 255,0 0,2 a 510,0	V 220,0 200,0 440,0 380,0

- ◆ Los valores de ajuste de F97 y F98, la frecuencia de salida máxima y, la tensión de salida máxima, serán los valores de ajuste de la frecuencia y la tensión nominales puestos en la chapa de características del motor.
- ◆Un valor de ajuste de F97 menor que la frecuencia nominal del motor puede resultar posiblemente en una salida de sobrecorriente desde el variador que puede dañar al motor o disparar.

La protección de sobrecorriente del variador y un valor de ajuste F97 más alto que la frecuencia nominal del motor puede posiblemente llevar a una salida de torque más pequeña desde el motor.

No	F99	Configuración para la frecuencia intermedia	0,10 a 300,00	HZ	3,00	2,50
No	F100	Configuración para la tensión intermedia	0,0 a 255,0 0,0 a 510,0	V	16,5 33,0	15,0 28,5
No	F101	Configuración de la frecuencia de salida mínima	0,10 a 20,00	HZ	1,50	1,25
No	F102	Configuración de la tensión mínima	0,0 a 50,0 0,0 a 100,0	V	9,5 19,0	8,5 17,0

44

◆ Los valores de ajuste de F99 a F102 estarán basados en el siguiente cálculo básico en concordancia con la tensión y frecuencia nominales del motor:

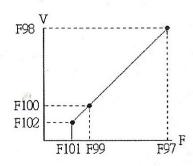
220V (tensión nominal) ÷ 60HZ (frecuencia nominal) = 3,67 V/HZ

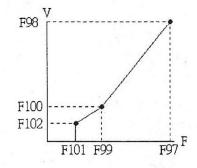
Valor de referencia, para configurar la tensión intermedia:

3,67 × F99 (frecuencia intermedia tomada 3 Hz como base) × la rapidez de elevación (boosting) % de la tensión

Ejemplo: F99 = 3HZ; rapidez de elevación (boosting) de la tensión 150% (La máxima rapidez no debe exceder 180%) o sea:

 $3.67 \text{ V/HZ} \times 3\text{HZ} \times 150\% = 16.5\text{V}$


Valor de referencia para configurar la tensión mínima:


3,67 × F101 (frecuencia minima tomada 1,5 HZ como base) × la rapidez de elevación (boosting) % de la tensión

Ejemplo: F101 = 1,5HZ; rapidez de elevación (boosting) de la tensión 175% (la máxima rapidez no debe exceder 200%) O sea:

$$3.67 \text{ V/HZ} \times 1.5 \text{HZ} \times 175\% = 9.6 \text{V}$$

- ◆ Debido a que la capacidad nominal varía con los diferentes motores, ver apéndice B (P10-1) del manual original del LS 650, por los valores de ajuste de fábrica.
- ◆ La selección de alto torque de arranque (Fig 3), debe ser aplicada solo a lugares donde la longitud del cableado desde la salida del variador hasta el motor, es mayor que 150, o bien, lugares que tengan una caída de tensión más grande.
- ♦ F102 configuración de la tensión mínima, es la función "Boost": cuando se necesita una salida de baja velocidad y alto torque, incremente el valor configurado de F102 por pasos y confirme la corriente tomada por el motor.

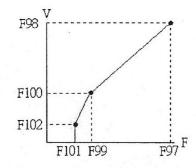


Figura 1 (aplicación general)

Figura 2 (motores de ventiladores y bombas)

Figura 3 (alto torque de arranque)

durante la 🧤	Parámetro 📗	Descripción	Rango	Unidad	Ajuste de fábrica
operación					

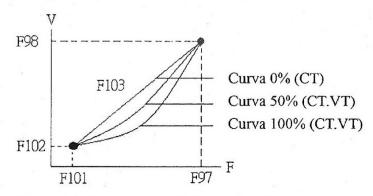


Figura 4 (Motores de ventiladores y bombas)

- X Se require que el usuario efectúe el ajuste cuidadosamente, sin configurar el valor demasiado grande.
- X El modo VT solo puede operar, el control de curva V/F de 2 puntos con un valor de ganancia (F103) variando dentro del 30% al 100%.
- * Cuando se configuran las curvas V/F, seguir sus respectivas aplicaciones, para armar las curvas bajo las siguientes condiciones: F97>F99>F101; F98>F100>F102.
- * El modo VT restringe los siguientes rangos de parámetros:
 - (1) $F97 \ge 50,00 \text{ Hz or } 60,00 \text{Hz}$
 - (2) $F98 \le 200,0V \circ 220,0V / 380,0V \circ 440,0V$
 - (3) F101≤2,00 Hz
 - (4) F102≤8,5V o 9,5V / 17,0V o 19,0V
 - (5) F103≤30,0%, la restricción será habilitada con la indicación de alarma ERR=16, cuando se exceda el rango de ajuste.

Recuperación de parámetros

Programable				A STATE OF THE	
durante la	Parámetro	Descripción	Rango	Unidad	Ajuste de fábrica
operación					laurica
No	F141	Recuperación de parámetros	0 a 6		0

0: No recupera

- 1: Configuración de fábrica 220V/440V, 60HZ: Recupera las configuraciones de fábrica 220V/440V, 60HZ originales.
- 2 : Configuración de fábrica 220V/400V, 50HZ: Recupera las configuraciones de fábrica 220V/440V, 50HZ originales
- <u>3</u>: Configuración de fábrica 200V/380V, 60HZ: Recupera las configuraciones de fábrica 200V/380V, 60HZ originals.
- <u>4</u>: Configuración de fábrica 200V/380V, 50HZ: Recupera las configuraciones de fábrica 200V/380V,50HZ originales

- X Parámetros F94, F95, F109 a F112están excluídos de esta función.
- 5 : Borrado de los registros de fallas:
 - ◆ Cualquier fenómeno de falla que tome lugar durante la operación del variador, será registrado en los parámetros F109 a F112.
- → Habilite la función F141=5, borrado de los registros de falla, para borra. Los contenidos de fallas guardados en la memoria.
- 6 : Todos los parámetros para lectura solamente:

Sí F142	Enclave de los parámetros	0 a 1 0
31 1142	funcionales	ou i

- <u>0</u>: Cambiable: Todos los valores de ajuste de los parámetros, pueden ser guardados en la memoria EEPROM del display
- <u>1</u>: Parámetros funcionales enclavados: Esta función es capaz de enclavar la mayoría de los contenidos de los parámetros; los contenidos son inmodificables y para mostrar solamente.

Notas:

- -Para descripción detalla de la función de auto- operación (operación automática): F123 y F124, referirse al manual original del LS 650.
- -Para descripción detalla de las funciones correspondientes a aplicación de bomba de agua: F143 a F156, referirse al manual original del LS 650.
- -Para descripción detallada de las funciones del control P.I.D (control porporcional—integral- derivativo): F114 a F122, referirse al manual original del LS 650.
- -Para descripción detallada de las funciones de las comunicaciones series MODBUS: F104 a F108, referirse al manual original del LS 650.
- -Para detalles sobre el registro de fallas: funciones F109 a F113, referirse al manual original del LS 650.

Protección y soluciones

♦ Diagnósticos de falla.....5-1

Diagnóstico de fallas

◆ Este cápitulo cubre los diagnósticos y las acciones de remedio para la falla del variador, además el análisis de problemas y soluciones para los fenómenos de falla del motor.

<Tabla> de indicación de fallas y reparación

Código de error	Descripción	Posibles causas	Acciones de remedio
Error 0	Falla de la comunicación	 Comprobar cable del teclado Falla del display Falla de la placa CPU 	Cambiar cable del teclado Reemplazar placa CPU
Error 1	Sobrecorrientes en el estado de espero	Cortocircuitos fase a fase o a tierra tiene lugar en el cable de salida	Verifique el cable de salida para eliminar cualquier fen émeno de cortocircuito
Error 2	Sobrecorriente durante la aceleración	 Tiempos de aceleración demasiado cortos (fácil de cuasar sobrecorriente) Fugas del motor 	 Configurar tiempo y corriente de frenado F9, F10 Extender el tiempo de aceleración de manera apropiada Comprobar la aislación o cambiar a uno Nuevo
Error 3	Sobrecorriente durante la desaceleración	Tiempo de desaceleración demasiado corto	Extender el tiempo de desaceleración apropiadamente (el ajuste deberá cumplir con el tiempo de desaceleración requerido por GD ²)
Error 4	Sobrecorriente durante la marcha a vol. de referecnia	 Motor fue conduncido a acelarar por una fuerza externa Cambio drástico de la carga 	 Corregir el sistema y eliminar la fuente de perturbación Variar la carga suavemente
Error 5	Falla externa	Entrada de se nal de falla externa desde los terminales de entrada digital (Di3 a Di8)	Eliminar la causa de la falla externa.
Error 6	Sobretensión de continua (O.V) durante la operación	 La tensión de entrada de la alimentación (RST), demasiado alta como para superar el nivel de prtección de continua Tiempo de desa celeración demasiado corto, energ ía regenerative del motor demasiado grande. (200Vac de entrada: O.V. 414Vdc/ 400V: O .V. 827Vdc) 	 Baja la tensión de entrada de la fuente de alimentación Extender el tiempo de desaceleración o conectar la resistencia de frenado
Error 7	Baja tension de continua (LV) durante la operación	Corte de ener gia momentánea dejó la tensión más baja que el nivel de protección LV de DC (200V: L.V. 200Vdc/ 400V: L.V. 400Vdc) Tensión de alimentae ión de entrada demasiado baja	Examinar la causa y mejorar la calidad de la fuente de alimentación
Error 8	Relé termoelectrónico habilitado	 La corriente de carga del motor superó los valores termoelectrónicos internos ajustados (F84, F85, F90) F102 y F101: fueron ajustados demasiado altos en la curva V/F 	 Corrija la carga del motor y chequee los parámetros (F84, F85 y F90) para su corrección. Vuelva a examinar los valores de ajuste de los parámetros (F101 y F102) de la V/F característica Ajuste el F90: corriente nominal del motor a un va lor un poco más alto.

Error 9 Variador sobrecargad más tiempo que el pe (150%, 60 segundos/\(\frac{1}{20\)}\), 60 segundos/\(\frac{1}{20\)}\)	nominal nor by segundos.	• Examine si el valor supera al valor nominal ajustado en F95 CT: (150%, 60 segundos), (175%, 27,5 segundos), (200%, 3 segundos) VT: (120%, 60 se gundos), (145%, 27,5 segundos), (170%, 3 segundos)
---	--------------------------	--

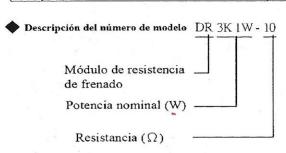
<Tabla> de indicación de fallas y reparación (continuación).

Código de error	Descripción	Posibles causas	Acciones de remedio
	Temperatura del disipador de calor demasiado alta	 Funcionamineto defectuoso del ventilador de refrigeración Temperatura ambiente demasiado alta 	 Cambiar el ventilador de refrigeración Aumentar el volumen de intercambio de aire con el medio ambiente
Error 10	PF, fuente de alimentación de entrada sin una fase o tensión demasiado baja	 Interruptor o contactor magnético habilitados defectuosamente. Terminales de cableado de la alimentación de entrada flojos La fluctuación demasiado grande, para la tensión de entrada de la fuente de alimentación 	Compruebe la causa, tome acciones correctivas y reemplace o repare la alimentación
	PUF, fusible fundido	Módulo IGTB dañado y fusible fundido, debido a un cor tocircuito o puesta a tierra en el lado de salida del variador	Compruebe las causas, tome acciones correctivas y reemplace o repare el variador
Error 11	Parámetros almacenados en display, bloqueados e inmodificables	El almacenamiento de parámetros se ha restringido y la modificación adicional de nuevos datos, es inadmisible	Si modificar los nuevos datos es lo que se desea, configure el parámet ro F142= 0 cambiable.
Error 12	Error de ajuste paamétrico 0 (Predeterminado 1)	La memoria EEPROM falló, almacenamiento incomplete, el valor de parámetros fuera de ajuste	 Utilice el parámetro F141= I, inicialización de parámetros recupere los valores de ajuste de fábrica y proceda a ajustar el grupo de parámetros del motor, o chequee uno por un o los valores ajustados de los parámetr os por cualquier valor fuera de rango. Si los pasos anteriores resultaron aúr en vano, envie el variador para su reparación
Error 13	Error de ajuste paramétrico 1 (Ajuste de "Di" repetido)	Terminales de entrada multifuncionales Di3 a Di8 se programan para una función identica (excepo el 0: desactivado)	Examine los valores de ajuste de los parámetros F67 a F72 por cuaquier configuración repetida
Error 14	Error de ajuste paramétrico 2	El valor de ajuste incorrecto del parámteroes causado por las siguientes razones: ①(F101>F99>F97) ②(F15>F16)	 Compruebe los siguientes dos puntos de condiciones para ajustar los valores normales del parámetro: ①(F101<f99<f97)< li=""> </f99<f97)<> ②(F15<f16)< li=""> </f16)<>
Error 15	Error de ajuste paramétrico 3	El valor de ajuste incorrecto del parámetro es causado por: F90 x 1,3 >F95	Compruebe la siguiente condición para configurar el valor estándar del parámetro (F90 x 1,3 ≤ F95)

Error 16	Error de ajuste paramétrico 4	•	El valor de ajuste incorrecto del parámetro es causado por las siguientes cinco razones: ①F97<50.0HZ, o 60.0HZ ②F98>220.0/440.0V ③F101>2.00HZ ④F102>8.5V,9.5V,17.0V o 19.0V ⑤F103<30%	•	Compruebe los siguientes valores ajustados en fábrica para los parámetros: ①F97≧60.0HZ, o 50.0HZ ②F98≦ 220V, 220V, 380V o 440V ③F101≦60.0 Hz/1.5Hz o 50.0Hz/1.25Hz2.00HZ ④ F102≦ 8.5V,9.5V,17.0V o 19.0V ⑤Curva VT ≧30%
Error 17	Error de código de programa	•	Falla en el procesador del display	•	Compruebe las causas, tome acciones correctivas y reemplace el variador, o devuelvalo a fábrica para su reparación
Error 21	Sobretensión en el estado de espera	٠	La tensión de entrada de la fuente de alimentación (RST), era demasiado alta como para causar que la tensión en el bus de CC exceda el nivel de detección de sobretensión	•	Reducir la tensión para caer dentro del rango de las especificaciones de la tensión de alimentación
Error 22	Sobretensión durante la aceleración	•	Motor arrancado a partir del reposo (fácil de causar sobrecorriente o sobretensiones)	•	Reparar el problema de la fuga del motor Cambiar motor
Error 23	Sobretensión durante la desaceleración	•	Tiempo de desaceleración demasiado corto (fácil de causar sobretensión o sobrecorriente)	•	Extender el tiempo de desaceleración apropiadamente
Error 24	Sobretensión durante la marcha a la velocidad de referencia	•	Motor fue llevado a arrancar por una perturbación externa Cambio drástico de la carga	•	Corregir el sistema y eliminar la fuente de la perturbación externa. Cambiar la carga suavemente

Selección de unidades y resistencias de frenado

•	Selección de unidad de frenado6) -	1
•	Selección resistencia de frenado	5-	2


			Variador				Especif	icaciones	
Tensió n	Capacidad de motor aplicable HP KW		Especificación de Resistencia equivalente	Torque de frenado (10%ED)%	Mínimo valor de resistencia equivalente	Resistor de frenado (Modulo)	Resistor de frenado	Modelos de unidad de frenado montados	Unidad de frenado /
	1		W/Ω		(Ω)		Cant.	externamente	Cant.
	0.5	0.4	150W/150Ω	225	75Ω				Annual Committee of the
	1	0.75	150W/150Ω	150	75Ω				
	2	1.5	300W/100Ω	125	39Ω				
	3	2.2	500W/60Ω	140	30Ω			Inc luída	
	5	3.7	800W/40Ω	125	27Ω		-	incidida	
	7.5	5.5	1200W/25Ω	135	18Ω	DR1K5W-24	1		
	10	7.5	1500W/20Ω	125	10Ω	DRIK5W-20	1		
	15	11	2200W/13.6Ω	125	10Ω	DR3K1W-12	1		
	20△	15	3000W/10Ω	125	6.6Ω	DR3K1W-10	1	LSBR -2015B	1
200V	25△	18.5	3700W/8Ω	125	6.6Ω	DR4K6W-8	1	LSBR -2022B	1
	30△	22	4400W/6.8Ω	125	3.3Ω	DR4K6W-6.6	1	LSBR -2022B	1
	40△	30	6000W/5Ω	125	3.3Ω	DR6K2W-5	1	LSBR -2015B	2
		37	7400W/4Ω	125	3.3Ω	DR4K6W-8	2	LSBR -2022B	2
	50△				<u> </u>		2		
	60△	45	9000W/3.3Ω	125	2.5Ω	DR4K6W-6.6		LSBR -2022B	2
	75△	55	11000W/2.7Ω	125	2.5Ω	DR6K2W-5	. 2	LSBR -2022B	3
	100	75	15000W/2Ω	125		DR6K2W-6	3	LSBR -2022B	4
	125	90	18000W/1.6Ω	125		DR6K2W-5	3	LSBR -2022B	405
	150	1 10	22000W/1.3Ω	125		DR6K2W-5	4	LSBR -2022B	5
	1	0.75	150W/300Ω	200	150Ω	10			
	2	1.5	300W/300Ω	155	150Ω				
	3	2.2	500W/150Ω	175	72Ω				
	5	3.7	800W100Ω	170	72Ω			Inclu ída	
	7.5	5.5	1200W/80Ω	155	40Ω	DR1K5W-80	1		
	10	7.5	1500W/60Ω	155	40Ω	DR1K5W-60	1		
	15	11	2200W/50Ω	135	40Ω	DR3K1W-47	I		
	20△	15	3000W/40Ω	125	20Ω	DR3K1W-40	1	LSBR -4015B	1
	25△	18.5	3700W/32Ω	125	20Ω	DR4K6W- 31.3	1	LSBR -4030B	1
	30△	22	4400W/27.2Ω	125	20Ω	DR4K6W- 26.6	1	LSBR -4030B	1
	40△	30	6000W/20Ω	125	14.3Ω	DR6K2W-20	1	LSBR -4030B	1
400V	50△	37	7400W/16Ω	125	14.3Ω	DR4K6W- 31.3	2	LSBR -4030B	2
	60△	45	9000W/13.3Ω	125	10Ω	DR4K6W- 26.6	2	LSBR -4030B	2
	75△	55	11000W/10Ω	125	6.6Ω	DR6K2W-20	2	LSBR -4030B	2
	100△	75	15000W/8Ω	125	6.6Ω	DR6K2W- 23.5	3	LSBR -4030B	3
	125	90	18000W/6.6Ω	125		DR6K2W-20	3	LSB R-4030B	3
	150	110	22000W/5.4Ω	125		DR6K2W-20	4	LSBR -4030B	4
	175	132	26400W/4.5Ω	125	1	DR6K2W-20	4	LSBR -4030B	5
	200	160	32000W/3.7Ω	125		DR6K2W-20	5	LSBR -4030B	6
	250	185	37000W/3.2Ω	125		DR6K2W-20	6	LSBR -4030B	7
	300	220	44000W/2.7Ω	125		DR6K2W-20	8	LSBR -4030B	8
	350	260	52000W/2.3Ω	125	 	DR6K2W-20	9	LSBR -4030B	9

Selección de resistencia de frenado

◆ Especificaciones de las resistencia de frenado DR:

	Modelo N°	Modelo	Conexión
	DR1K5W-R		
	16Ω		
	20Ω	Figura A	R10
R	24Ω	Tigura A	KIO O R2
	60Ω		v 2 * *
	80Ω	1 1	*
	DR3K1W-R		
	8Ω		
	10Ω		
R	12Ω	Figura B	RIO
K	30Ω		
	40Ω		71
	47Ω		
	DR4K6W-R		8 8
	5.3Ω		
	6.6Ω	Figura B	
R	8Ω	Figura C	R10 R2
	20Ω	Tigura C	
	26.6Ω		
	31.3Ω		
	DR6K2W-R		
	4Ω		
	5Ω	F: C	
R	6Ω	Figura C	RIO R2
	15Ω		
	20Ω		
	23.5Ω		

Condiciones de potencia de freno:

- 1. Duty/ cycle: 1ms/2ms
- 2. Tiempo de frenado: 2seg
- 3. Tiempo de reposo: 18 seg

$$ED\% = \frac{2s}{20s} \times 100 = 20\%$$

WII Apéndice

\	Especificaciones standard	7-1
	Características comunes	7-2
\Pi	Resumen de los códigos de error	7-3
•	Esquemas de dimensiones	7-4

Especificaciones de la serie 200V

Мо	odelo No.:LS650-2000	0K2	0K4	0K7	IK5	2K2	4 K 0	5 K 5	7K.5	011	015	018	022	030	037	045	055	075	090	110
Potenci	Potencia de motor aplicable (KW)			0,75	1,5	2,2	4,0	5,5	7,5	11	15	18,5	22	30	37	45	55	75	90	110
Potenc	ia de motor aplicable (HP)	0,25	0,5	1	2	3	5	7,5	10	15	20	25	30	40	50	60	75	100	125	150
Salida	Capacidad de salida nominal (KVA)	0,6	1,2	1,7	2,7	3,8	6,4	9,5	12,5	17.5	23	29	34	45	57	68	82	114	133	162
	Corriente de salida nominal (A)	1,6	3,2	4,5	7,0	10	17	25	33	46	62	76	90	120	150	180	215	300	350	425
	Tensión de salida máx. (V)	Igual a la tensión de entrada correspondiente																		
	Rango de frecuencia de salida (Hz)	0.00 a 300.00Hz																		
	Frecuencia Portadora (Hz)			161	KHZ			12KHZ 10KHZ					8KHZ 6			HZ	5KHZ	зкнг		
20.72	Tensión y frecuencia de entrada	Fuente de alimentación trifásica 200V/240V 50/60HZ																		
Entrada	Tolerancia para la fluctuación de la tensión									±10°	%(180)V a 2	(64V)							
	Tolerancia para la fluctuación de la frecuencia									±5%	6(47F	Z a 6	3HZ)							
	Refrigeración									Ven	ıtilaci	ón for	zada							

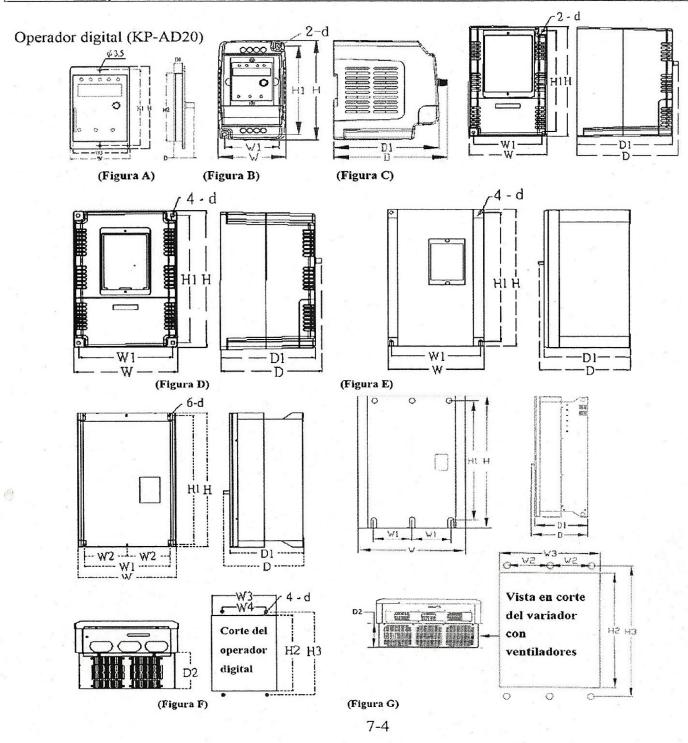
Especificaciones de la serie 400V

VT series

N	Iodelo No.: LS650-4000	0K7	1K5	2K2	4K0	5K5	7K5	011	015	018	022	030	037	045	055	075	090	110	132	160	185	220	260
Potei	ncia de motor aplicable (KW)	0,75	1.5	2,2	4,0	5,5	7,5	11	15	18,5	22	30	37	45	55	75	90	110	132	160	185	220	260
Pote	ngia de motor aplicable (HP)	1	2	3	5	7,5	10	15	20	25	30	40	50	60	75	100	125	150	175	200	250	300	350
	Capacidad de salida nom. (KVA)	2,4	3,4	5,3	6,8	9,5	13	19	24	30	34	47	57	'70	87	110	144	164	210	228	265	340	395
	Corriente de salida nom. (A)	3,2	4,5	7,0	9,0	12,5	17	25	32	40	46	62	75	92	115	150	180	216	275	300	350	450	530
Salida	Tensión de salida máx(V)		Igual a la tensión de entrada correspondiente																				
O 1	Rango de frec. de salida (Hz)			-		0.00 a 300.00Hz																	
	Frecuencia portadora (Hz)		16KHZ			12KHZ		Z	10KHZ		z	8KHZ		Z	6K	6KHZ 5k		5KHZ 4KI		HZ	HZ 3KHZ		z
15	Frecuencia y tensión de entrada	Trifásica 380V/460V 50/60HZ																					
Entrada	Tolerancia para la fluctuación de tensión							-			±l	0%(3	42V a	506	V)								
	Tolerancia para la fluctuación de la frecuencia								y		±:	5%(47	HZ a	63H2	Z)								
	Refrigeración										V	entila	ción f	orzad	a			s - M		7 (4)			

Características comunes

	Método de control	Modulación por ancho de pulso de 3 fases de onda senoidal, frecuencia de portadora 2KHZ a 16 KHZ. Control N/F tensión-frecuencia
	Máx. frecuencia de salida	0,00 a 300,00Hz
	Presición de frecuencia (fluctuación con la temperatura)	Señal digital: $\pm 0,1\%$ (-10°C a +40°C), Señal analógica: $\pm 0,1\%$ (25°C ± 10 °C)
	Presición para establecer la frecuencia	Señal digital: 0,01Hz(0,01 a 300,00Hz), Señal analógica: 0,06/60,00Hz
	Precisión para regulación de la velocidad	Vector de tensión: ± 1,0 %; V/F : ± 3,0% a 5,0%
	Tiempo de aceleración/ desaceleración	Configuración individual e independiente de 8 pares de tiempos de aceleración y desaceleración
trol	Curva V/F	CT: configuración de línea recta de 3 puntos; CV: configuración de curva de 2 puntos
Control	Funciones de control	15 funciones mostradas, 9 comandos de velocidad, límites de frecuencia superior e inferior, curva "S", entradas en multiplexación, control del terminal de salida, 16 velocidades digitales, frecuencias de salto (jumping), compensación de resbalamiento, función PID; PID exclusivo para bombas de agua, configuración funcional para bombas de agua inteligentes, frenado de DC en ON/ OFF, PLC simple, comunicación MODBUS, función de autooperación.
	Señal para el establecimiento de la frecuencia	DC 0 a 10V; 0 a 20mA
	Torque de frenado	20% aprox.; 125% con controlador de freno montado
25 X	Funciones de control adicionales	Operación digital, R5-485, regulación de velocidad control PID, control de multivelocidad, funciones de bomba de agua, etc.
	Proteción del motor	Protegido por un relé tipo termoelectrónico integral.
Ğ	Protección por sobrecorriente	CT: exceder la corriente nominal en 200% por 3 segundos; disparará la protección por sobrecorriente para parar al motor automaticamente. VT: exceder la corriente nominal en 170% por 3 segundos; disparará la protección por sobrecorriente para parar el motor automaticamente.
sción	Habilidad de sobrecarga del variador	CT: 150% - 60 Segundos VT: 120%,60 Segundos
Funciones de protección	Protección por sobretensión	Nivel de sobretensión: Vdc > 414V(serie 200-240V) / Vdc > 827V(Serie 380-460V)
ones de	Protección por baja tensión	Nivel de baja tensión: Vdc < 200V(Serie 200-240V) / Vdc < 400V(Serie 380-460V)
Funci	Protección por alimentación	Protección por fase baja para la alimentación de entrada (equipada para variadores con una potencia arriba de 5,5 KW); protección por fase baja para la salida(equipadas para variadores con una potencia arriba de 0,4KW)
20 20	Sobrecalentamiento de ventilares	Protección por termocupla 85°C±5°C



sción	Prevención de bloqueo (stall prevention)	Para proteger al variador del bloqueo durante la aceleración, la desaceleración y la marcha a la velocidad de referencia.
protec	Protección de puesta a tierra	Para proteger los circuitos electrónicos.
Funciones de protección	Indicación de carga	El indicador de carga estará encendidos cuando la tensión DC del circuito principal sea arriba de 50V.
Funci	Lugares utilizados	Ubicación en interiores, libres de corrosión o polvos.
nes ental	Temperatura ambiente	-10°C a +40°C (modelo montado en recinto cerrado) -10°C a +45°C (modelo abierto)
Condiciones medioambiental es	Temperatura de almacenaje	-20°C a +60°C
Co ie	Humedad	Por debajo del 90% (sin condensación)
E	Vibración	1G por debajo de 20Hz; 0,2G de 20 a 50Hz

Códigos de Error	Descripción de falla
Err 0	La comunicación del operador digital ha fallado
Err 1	Sobrecorriente durante el estado sin marca (stand by)
Err 2	Sobrecorriente durante la aceleración
Err 3	Sobrecorriente durante la desaceleración
Err 4	Sobrecorriente durante la marcha a la velocidad de referencia
Err 5	Falla externa
Err 6	Sobretensión del bus de continua (O.V) durante la operación
Err 7	Baja tension del bus de continua (L.V) durante la operación
Err 8	Relé térmico electronico activado
Err 9	Variador sobrecargado por más tiempo que el permitido: 150%, 60 seg en CT y 120%, 60 seg en VT
Err 10	Sobretemperatura, baja tensión de entrada, fusible quemado.
Err 11	Parámetros guardados en el display que están bloqueados y no pueden cambiarse.
Err 12	Error de configuración de parámetro (fuera de rango)
Err 13	Error de configuración de parámetro (configuración de entrada DI repetida)
Err 14	Error de configuración de parámetro(F101>F99>F97;F15>F16)
Err 15	Error de configuración de parámetro(F90>F95×1.3)
Err 16	Error de configuración de parámetro de la curva tensión/ frecuencia (F97,F98,F101,F102,F103)
Err 17	Error código de programa
Err 18 ~	Err 20 Reservados para señales de falla

Err 21	Sobretensión durante el estado sin marca (stand by)	
	Sobretensión durante la aceleración	ď
	Sobretensión durante la desaceleración	W
Err 24	Sobretensión durante la marcha a la velocidad de referencia	

Serie de 200V

Potencia de motor apicable	Otras dimensiones internas(mm)				Diámetro de agujeros de	aloja	Esquema							
		ales(n			,			montaje ψ			adore		Contract Contract	N°
(HP)/ (KW)	CONTRACTOR (CONTRACTOR (CONTRA	Н	D	W1	W2	H1	D1	d	W3	W4	H2	H3	D2	
KP-AD 20	70.9	102	25.8		_	93	15.8	3.5	65.3		84.5	_	_	A
0.25 / 0.2	82.5	145	138	66.5	-	128.5	127.5	4.6		_	_	-	_	
0.5 / 0.4														В
1 / 0.75														_
2/1.5														
0.5 / 0.4	114	172	146	101	-	159	136	5.3		_	_	-	4.1	
1/0.75														С
2/1.5														
3 / 2.2	7.50	214	146	137.5	_	200	136	5.3			_	-	_	D
5/3.7	152	214	146											
7.5 / 5.5	2001 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	300	180	170	-	283	170	7			-		_	
10 / 7.5	188													Е
15 / 11														
20 / 15		420	227	218	_	401	217	7	242 17		70 407	422	112	
25 / 18	250									170				
30 / 22														
20 / 15		458	227	218	_	401	217	7	242	170	445	460	112	
25 / 18														
30/22	250													
40/30														F
40 / 30	345	533	272	305	152.5	515	262	7	330	212	515	538	140	
50 / 37														
60 / 45														
50/37		563	272	305	152.5	515	262	7	330	212	546	568	140	
60 / 45	345													
75 / 55														
100 / 75		770	70 322	262.4	220	749.5	312	7	582		745	770	158	Parameter Constitution of the Constitution of
125/90	604													G
150 / 110	-													

Serie 400V

Potencia de motor aplicable	Dimensiones totales(mm)			Otras dimensiones internas(mm)				Dimensiones de agujeros de montaje Ψ		Esquema N°				
(HP)/ (KW)	W	Н	D	W1	W2	H1	D1	d	W3	W4	H2	НЗ	D2	
KP-AD 20	70.9	102	25.8		_	93	15.8	3.5	65.3	<u></u>	84.5			A
0.5 / 0.4	114	172		101	<u> </u>	159	136	5.3		_	_	-	_	
1 / 0.75			146											C
2 / 1.5														
3 / 2.2	152	214	146	137.5	_	200	136	5.3		_	-	_	_	D
5 / 3.7														D
7.5 / 5.5	188	300	180	170	_	283	170	7	_	_	_	_	_	
10 / 7.5														E
15 / 11														
20 / 15	250	420		218	_	401	217	7	242	170	407	422	112	
25 / 18			227											
30 / 22														
40 / 30														
20 / 15		458			_	401	217	7	242	170	445	460	112	
25 / 8.5	250		227	218										
30 / 22														
40 / 30														F
50 / 37														
50/37	345	533	272	305	152.5	515	262	7	330	212		538	140	
60 / 45											515			
75 / 55														
60 / 45	345	563	272	305	152.5	515	262	7	300	212	546	568	140	
75 / 55														
100 / 75														
125 / 90	604	770	70 322	262.4	220	749.5	312	7	582		745	770	158	
150 / 110														
175 / 132														
200 / 160														G
250 / 185														
300 / 220														
350 / 260														